Lukas Meier: Katalogdaten im Frühjahrssemester 2023

NameHerr Dr. Lukas Meier
Adresse
Seminar für Statistik (SfS)
ETH Zürich, HG G 15.2
Rämistrasse 101
8092 Zürich
SWITZERLAND
Telefon+41 44 632 97 49
E-Maillukas.meier@stat.math.ethz.ch
URLhttp://stat.ethz.ch/~meier/
DepartementMathematik
BeziehungDozent

NummerTitelECTSUmfangDozierende
401-0612-00LStatistik und Wahrscheinlichkeitsrechnung Information 5 KP3V + 1UL. Meier
KurzbeschreibungEinführung in die Grundlagen der Statistik, Wahrscheinlichkeitstheorie und Modellierung von Unsicherheiten im Zusammenhang mit Entscheidungsfindungen im Ingenieurwesen. Die Schwerpunkte liegen im Erstellen wahrscheinlichkeitstheoretischer Modelle, im Testen von Hypothesen und in der Überprüfung der Modelle. Als Software wird Python verwendet.
LernzielDas Ziel des Kurses besteht darin, den Studierenden grundlegende Hilfsmittel der Statistik und Wahrscheinlichkeitstheorie näherzubringen. Stets bezogen auf den Bereich der Risikobeurteilung und Entscheidungsfindung im Ingenieurwesen liegt der Schwerpunkt in der Anwendung der Hilfsmittel und in der Argumentation, die hinter der Anwendung dieser Disziplinen steht.

Kompetenzen: In dem Fach "Statistik und Wahrscheinlichkeitsrechnung" werden die Kompetenzen Modellierung sowie Datenanalyse & Interpretation gelehrt, angewandt und geprüft. Des Weiteren wird die Programmierung gelehrt.
InhaltGrundlagen der Wahrscheinlichkeitstheorie:

Grundlagen der Mengenlehre, Definitionen von Wahrscheinlichkeit, Axiome der Wahrscheinlichkeitstheorie, Wahrscheinlichkeiten von Vereinigungen und Schnittmengen, bedingte Wahrscheinlichkeiten, Satz von Bayes.

Modellierung von Unsicherheiten:

Zufallsvariablen, diskrete und kontinuierliche Verteilungen, Momente, Verteilungsparameter, Eigenschaften des Erwartungswertes, multivariate Verteilungen, Funktionen von Zufallsvariablen, der zentrale Grenzwertsatz, typische Verteilungen im Ingenieurswesen.

Beschreibende Statistik:

Grafische Darstellungen (Histogramme, Streudiagramme, Box-Plots), numerische Kennwerte.

Schätzungen und Modellbildung:

Auswahl der Verteilungsmodelle, QQ-Plots, Parameterschätzung, Momentenmethode, Maximum-Likelihood-Methode, Vertrauensintervalle, Hypothesentests.
LiteraturL. Meier, Wahrscheinlichkeitsrechnung und Statistik: Eine Einführung für Verständnis, Intuition und Überblick, Springer, 2020
https://link.springer.com/book/10.1007/978-3-662-61488-4
KompetenzenKompetenzen
Fachspezifische KompetenzenKonzepte und Theoriengeprüft
Methodenspezifische KompetenzenAnalytische Kompetenzengeprüft
Entscheidungsfindunggeprüft
Medien und digitale Technologiengefördert
Problemlösunggeprüft
Soziale KompetenzenKommunikationgefördert
Persönliche KompetenzenKreatives Denkengefördert
Kritisches Denkengeprüft
401-0620-00LStatistischer Beratungsdienst0 KP0.1KM. Kalisch, L. Meier
KurzbeschreibungDer statistische Beratungsdienst steht allen Angehörigen der ETH und in begrenztem Masse auch Aussenstehenden offen.
LernzielBeratung bei der statistischen Auswertung von wissenschaftlichen Daten.
InhaltStudierende und Forschende werden bei der Auswertung wissenschaftlicher Daten individuell beraten, insbesondere auch bei Bacheor-, Master- und Doktorarbeiten. Es ist sehr empfehlenswert, den Beratungsdienst nicht erst kurz vor dem Abschluss einer Arbeit aufzusuchen, sondern bereits bei der Planung einer Studie.
Voraussetzungen / BesonderesDies ist keine Vorlesung sondern ein Beratungsangebot. Es wird keine Prüfung durchgeführt, und es werden keine Kreditpunkte vergeben.

Anmeldungen richtet man an beratung@stat.math.ethz.ch Tel. 044 632 2223 oder 044 632 34 30

Voraussetzungen: Kenntnis der Grundbegriffe der Statistik ist sehr erwünscht.
401-4620-00LStatistics Lab Belegung eingeschränkt - Details anzeigen 6 KP2SM. Kalisch, M. Mächler, L. Meier, N. Meinshausen
Kurzbeschreibung"Statistics Lab" is an Applied Statistics Workshop in Data Analysis. It
provides a learning environment in a realistic setting.

Students lead a regular consulting session at the Seminar für Statistik
(SfS). After the session, the statistical data analysis is carried out and
a written report and results are presented to the client. The project is
also presented in the course's seminar.
Lernziel- gain initial experience in the consultancy process
- carry out a consultancy session and produce a report
- apply theoretical knowledge to an applied problem

After the course, students will have practical knowledge about statistical
consulting. They will have determined the scientific problem and its
context, enquired the design of the experiment or data collection, and
selected the appropriate methods to tackle the problem. They will have
deepened their statistical knowledge, and applied their theoretical
knowledge to the problem. They will have gathered experience in explaining
the relevant mathematical and software issues to a client. They will have
performed a statistical analysis using R (or SPSS). They improve their
skills in writing a report and presenting statistical issues in a talk.
InhaltStudents participate in consulting meetings at the SfS. Several consulting
dates are available for student participation. These are arranged
individually.

-During the first meeting the student mainly observes and participates in
the discussion. During the second meeting (with a different client), the
student leads the meeting. The member of the consulting team is overseeing
(and contributing to) the meeting.

-After the meeting, the student performs the recommended analysis, produces
a report and presents the results to the client.

-Finally, the student presents the case in the weekly course seminar in a
talk. All students are required to attend the seminar regularly.
Skriptn/a
LiteraturThe required literature will depend on the specific statistical problem
under investigation. Some introductory material can be found below.
Voraussetzungen / BesonderesPrerequisites:
Sound knowledge in basic statistical methods, especially regression and, if
possible, analysis of variance. Basic experience in Data Analysis with R.
KompetenzenKompetenzen
Fachspezifische KompetenzenKonzepte und Theoriengefördert
Verfahren und Technologiengefördert
Methodenspezifische KompetenzenAnalytische Kompetenzengefördert
Entscheidungsfindunggefördert
Medien und digitale Technologiengefördert
Problemlösunggefördert
Projektmanagementgefördert
Soziale KompetenzenKommunikationgefördert
Kooperation und Teamarbeitgefördert
Kundenorientierunggefördert
Menschenführung und Verantwortunggefördert
Verhandlunggefördert
Persönliche KompetenzenAnpassung und Flexibilitätgefördert
Kreatives Denkengefördert
Kritisches Denkengefördert
Selbstbewusstsein und Selbstreflexion gefördert
Selbststeuerung und Selbstmanagement gefördert
401-5640-00LZüKoSt: Seminar on Applied Statistics Information 0 KP1KM. Kalisch, F. Balabdaoui, A. Bandeira, P. L. Bühlmann, R. Furrer, L. Held, T. Hothorn, M. Mächler, L. Meier, N. Meinshausen, J. Peters, M. Robinson, C. Strobl, S. van de Geer
Kurzbeschreibung5 bis 6 Vorträge zur angewandten Statistik.
LernzielKennenlernen von statistischen Methoden in ihrer Anwendung in verschiedenen Gebieten, besonders in Naturwissenschaft, Technik und Medizin.
InhaltIn 5-6 Einzelvorträgen pro Semester werden Methoden der Statistik einzeln oder überblicksartig vorgestellt, oder es werden Probleme und Problemtypen aus einzelnen Anwendungsgebieten besprochen.
3 bis 4 der Vorträge stehen in der Regel unter einem Semesterthema.
SkriptBei manchen Vorträgen werden Unterlagen verteilt.
Eine Zusammenfassung ist kurz vor den Vorträgen im Internet unter http://stat.ethz.ch/talks/zukost abrufbar.
Ankündigunen der Vorträge werden auf Wunsch zugesandt.
Voraussetzungen / BesonderesDies ist keine Vorlesung. Es wird keine Prüfung durchgeführt, und es werden keine Kreditpunkte vergeben.
Nach besonderem Programm. Koordinator M. Kalisch, Tel. 044 632 3435
Lehrsprache ist Englisch oder Deutsch je nach ReferentIn.
Course language is English or German and may depend on the speaker.
447-0990-00LWorkshop Belegung eingeschränkt - Details anzeigen 1 KP1SL. Meier
KurzbeschreibungIm Workshop präsentieren die Kursteilnehmenden in einem kurzen Vortrag eine aktuelle statistische Fragestellung aus ihrem Arbeitsgebiet.
LernzielPräsentation eines statistischen Problems und Kennenlernen von verschiedenen Anwendungen von statistischen Methoden.