Ralph Spolenak: Katalogdaten im Herbstsemester 2017

Auszeichnung: Die Goldene Eule
NameHerr Prof. Dr. Ralph Spolenak
LehrgebietNanometallurgie
Adresse
Institut für Metallforschung
ETH Zürich, HCI G 511
Vladimir-Prelog-Weg 1-5/10
8093 Zürich
SWITZERLAND
Telefon+41 44 632 25 90
Fax+41 44 632 11 01
E-Mailralph.spolenak@mat.ethz.ch
URLhttps://met.mat.ethz.ch/
DepartementMaterialwissenschaft
BeziehungOrdentlicher Professor

NummerTitelECTSUmfangDozierende
327-0501-AALMetals I
Belegung ist NUR erlaubt für MSc Studierende, die diese Lerneinheit als Auflagenfach verfügt haben.

Alle andere Studierenden (u.a. auch Mobilitätsstudierende, Doktorierende) können diese Lerneinheit NICHT belegen.
3 KP6RR. Spolenak
KurzbeschreibungRepetition and advancement of dislocation theory. Mechanical properties of metals: hardening mechanisms, high temperature plasticity, alloying effects. Case studies in alloying to illustrate the mechanisms.
LernzielRepetition and advancement of dislocation theory. Mechanical properties of metals: hardening mechanisms, high temperature plasticity, alloying effects. Case studies in alloying to illustrate the mechanisms.
InhaltDislocation theory:
Properties of dislocations, motion and kinetics of dislocations, dislocation-dislocation and dislocation-boundary interactions, consequences of partial dislocations, sessile dislocations
Hardening theory:
a. solid solution hardening: case studies in copper-nickel and iron-carbon alloys
b. particle hardening: case studies on aluminium-copper alloys
High temperature plasticity:
thermally activated glide
power-law creep
diffusional creep: Coble, Nabarro-Herring
deformation mechanism maps
Case studies in turbine blades
superplastizity
alloying effects
Skripthttps://www.met.mat.ethz.ch/education/lect_scripts
LiteraturGottstein, Physikalische Grundlagen der Materialkunde, Springer Verlag
Haasen, Physikalische Metallkunde, Springer Verlag
Rösler/Harders/Bäker, Mechanisches Verhalten der Werkstoffe, Teubner Verlag
Porter/Easterling, Transformations in Metals and Alloys, Chapman & Hall
Hull/Bacon, Introduction to Dislocations, Butterworth & Heinemann
Courtney, Mechanical Behaviour of Materials, McGraw-Hill
327-0501-00LMetalle I3 KP2V + 1UR. Spolenak
KurzbeschreibungAuffrischung und Vertiefung der Versetzungstheorie. Mechanische Eigenschaften von Metallen: Härtungsmechanismen, Hochtemperaturplastizität, Legierungseffekte. Fallbeispiele der Legierungseinstellung zur Illustration der Mechanismen.
LernzielAuffrischung und Vertiefung der Versetzungstheorie. Mechanische Eigenschaften von Metallen: Härtungsmechanismen, Hochtemperaturplastizität, Legierungseffekte. Fallbeispiele der Legierungseinstellung zur Illustration der Mechanismen.
InhaltVersetzungstheorie:
Eigenschaften von Versetzungen, Versetzungsbewegung, Wechselwirkungen von Versetzungen mit Versetzungen und Grenzflächen
Konsequenzen von Versetzungsaufspaltung, Immobilisierung von Versetzungen
Härtungstheorie:
a. Mischkristallhärtung: Fallbeispiele an Kupfernickel- und Eisenkohlenstofflegierungen
b. Ausscheidungshärtung: Fallbeispiele an Aluminiumkupferlegierungen
Hochtemperaturplastizität:
Thermisch aktiviertes Versetzungsgleiten
Versetzungskriechen
Diffusionskriechen: Coble, Nabarro-Herring
Verformungsmechanismuskarten
Fallbeispiele an Turbinenschaufeln
Superplastizität
Legierungsmassnahmen
LiteraturGottstein, Physikalische Grundlagen der Materialkunde, Springer Verlag
Haasen, Physikalische Metallkunde, Springer Verlag
Rösler/Harders/Bäker, Mechanisches Verhalten der Werkstoffe, Teubner Verlag
Porter/Easterling, Transformations in Metals and Alloys, Chapman & Hall
Hull/Bacon, Introduction to Dislocations, Butterworth & Heinemann
Courtney, Mechanical Behaviour of Materials, McGraw-Hill
327-0612-AALMetals II
Belegung ist NUR erlaubt für MSc Studierende, die diese Lerneinheit als Auflagenfach verfügt haben.

Alle andere Studierenden (u.a. auch Mobilitätsstudierende, Doktorierende) können diese Lerneinheit NICHT belegen.
3 KP6RR. Spolenak
KurzbeschreibungEinführung in die Prinzipien der Materialauswahl. Vermittlung des Basiswissens der wichtigsten metallischen Werkstoffe und derer Legierungen: Aluminium, Magnesium, Titan, Kupfer, Eisen und Stahl. Spezialitäten der Hochtemperaturwerkstoffe: Nickel und Eisenbasis Superlegierungen, intermetallische Phasen und Refraktärmetalle.
LernzielEinführung in die Prinzipien der Materialauswahl. Vermittlung des Basiswissens der wichtigsten metallischen Werkstoffe und derer Legierungen: Aluminium, Magnesium, Titan, Kupfer, Eisen und Stahl. Spezialitäten der Hochtemperaturwerkstoffe: Nickel und Eisenbasis Superlegierungen, intermetallische Phasen und Refraktärmetalle.
InhaltDiese Vorlesung ist in fünf Teile gegliedert:

A. Grundlagen der Materialauswahl
Erläuterung der Prinzipien von Eigenschaftskarten
Vorstellung der 'Materials selector' software
Abhandlung einfacher Fallbeispiele

B. Leichtmetalle
Metallurgie von Aluminium, Magnesium und Titan
Spezielle Eigenschaften und Härtungsmechanismen
Fallstudien zum Werkstoffeinsatz

C. Kupferlegierungen

D. Eisen und Stahl
Die sieben Vorzüge des Eisens
Feinkornbaustähle, Warmfeste Stähle
Stahl und Korrosion
Auswahl und Einsatz in der Technik

E. Hochtemperaturwerkstoffe
Metallurgie und Eigenschaften der Superlegierungen: Eisen, Nickel, Kobalt
Eigenschaften und Einsatz von intermetallischen Phasen
Skripthttp://www.met.mat.ethz.ch/education/lect_scripts
LiteraturGottstein, Physikalische Grundlagen der Materialkunde, Springer Verlag
Ashby/Jones, Engineering Materials 1 & 2, Pergamon Press
Ashby, Materials Selection in Mechanical Design, Pergamon Press
Porter/Easterling, Transformations in Metals and Alloys, Chapman & Hall
Bürgel, Handbuch Hochtemperatur-Werkstofftechnik, Vieweg Verlag
Voraussetzungen / BesonderesVoraussetzungen: Metalle I
327-0712-00LNanometallurgie0 KP2SR. Spolenak
KurzbeschreibungSeminar für Doktoranden und Forschende im Bereich Nanometallurgie.
LernzielVertiefte Ausbildung von Forschenden auf dem Gebiet der Nanometallurgie
327-1204-00LMaterials at Work I4 KP4SR. Spolenak, E. Dufresne, R.  Koopmans
KurzbeschreibungThis course attempts to prepare the student for a job as a materials engineer in industry. The gap between fundamental materials science and the materials engineering of products should be bridged. The focus lies on the practical application of fundamental knowledge allowing the students to experience application related materials concepts with a strong emphasis on case-study mediated learning.
LernzielTeaching goals:

to learn how materials are selected for a specific application

to understand how materials around us are produced and manufactured

to understand the value chain from raw material to application

to be exposed to state of the art technologies for processing, joining and shaping

to be exposed to industry related materials issues and the corresponding language (terminology) and skills

to create an impression of how a job in industry "works", to improve the perception of the demands of a job in industry
InhaltThis course is designed as a two semester class and the topics reflect the contents covered in both semesters.

Lectures and case studies encompass the following topics:

Strategic Materials (where do raw materials come from, who owns them, who owns the IP and can they be substituted)
Materials Selection (what is the optimal material (class) for a specific application)
Materials systems (subdivisions include all classical materials classes)
Processing
Joining (assembly)
Shaping
Materials and process scaling (from nm to m and vice versa, from mg to tons)
Sustainable materials manufacturing (cradle to cradle) Recycling (Energy recovery)

After a general part of materials selection, critical materials and materials and design four parts consisting of polymers, metals, ceramics and coatings will be addressed.

In the fall semester the focus is on the general part, polymers and alloy case studies in metals. The course is accompanied by hands-on analysis projects on everyday materials.
LiteraturManufacturing, Engineering & Technology
Serope Kalpakjian, Steven Schmid
ISBN: 978-0131489653
Voraussetzungen / BesonderesProfound knowledge in Physical Metallurgy and Polymer Basics and Polymer Technology required (These subjects are covered at the Bachelor Level by the following lectures: Metalle 1, 2; Polymere 1,2)