André R. Studart: Katalogdaten im Frühjahrssemester 2022 |
Name | Herr Prof. Dr. André R. Studart |
Lehrgebiet | Komplexe Materialien |
Adresse | Complex Materials ETH Zürich, HCI G 537 Vladimir-Prelog-Weg 1-5/10 8093 Zürich SWITZERLAND |
Telefon | +41 44 633 70 50 |
Fax | +41 44 633 15 45 |
andre.studart@mat.ethz.ch | |
Departement | Materialwissenschaft |
Beziehung | Ordentlicher Professor |
Nummer | Titel | ECTS | Umfang | Dozierende | |
---|---|---|---|---|---|
327-0603-00L | Ceramics II | 3 KP | 2V + 1U | A. R. Studart, K. Conder | |
Kurzbeschreibung | Understanding of the electrical, dielectric and magnetic properties of functional ceramics for materials engineers, physicists and electrical engineers. An introduction is given to modern ceramics materials with multiple functions. | ||||
Lernziel | Ceramics II covers the basic principles of functional ceramics such as linear and non-linear dielectrics, semiconductors, ionic and mixed ionic-electronic conductors as well as materials aspects of high temperature superconductors. Examples of applications cover the range from piezo-, pyro and thermoelectric materials over sensors and solid oxide fuel cells to superconducting magnets. At the end of the course, the students should be able to select the chemistry, design the microstructure and devise processing routes to fabricate functional ceramics for electronic, electromechanical, optical and magnetic applications. | ||||
Inhalt | - Applications of functional ceramics - Dieletrics fundamentals & insulators - Capacitors & resonators - Ferroelectricity & piezoelectricity - Pyroelectricity and thermoelectric ceramics - Defect chemistry - Conductors - Impedance spectroscopy - Magnetic ceramics - Superconductors | ||||
Literatur | Electroceramics; J.A.Moulson Free download of the book in ETH domain is possible following the link: http://www3.interscience.wiley.com/cgi-bin/booktoc/104557643 Principles of Electronic Ceramics; L.L.Hench, J.K.West | ||||
327-3002-00L | Materials for Mechanical Engineers | 4 KP | 2V + 1U | R. Spolenak, A. R. Studart, R. Style | |
Kurzbeschreibung | This course provides a basic foundation in materials science for mechanical engineers. Students learns how to select the right material for the application at hand. In addition, the appropriate processing-microstructure-property relationship will lead to the fundamental understanding of concepts that determines the mechanical and functional properties. | ||||
Lernziel | At the end of the course, the student will able to: • choose the appropriate material for mechanical engineering applications • find the optimal compromise between materials property, cost and ecological impact • understand the most important concepts that allow for the tuning of mechanical and functional properties of materials | ||||
Inhalt | Block A: Materials Selection • Principles of Materials Selection • Introduction to the Cambridge Engineering Selector • Cost optimization and penalty functions • Ecoselection Block B: Mechanical properties across materials classes • Young's modulus from 1 Pa to 1 TPa • Failure: yield strength, toughness, fracture toughness, and fracture energy • Strategies to toughen materials from gels to metals. Block C: Structural Light Weight Materials • Aluminum and magnesium alloys • Engineering and fiber-reinforced polymers Block D: Structural Materials in the Body • Strength, stiffness and wear resistance • Processing, structure and properties of load-bearing implants Block E: Structural High Temperature Materials • Superalloys and refractory metals • Structural high-temperature ceramics Block F: Materials for Sensors • Semiconductors • Piezoelectrica Block G: Dissipative dynamics and bonding • Frequency dependent materials properties (from rheology of soft materials to vibration damping in structural materials) • Adhesion energy and contact mechanics • Peeling and delamination Block H: Materials for 3D Printing • Deposition methods and their consequences for materials (deposition by sintering, direct ink writing, fused deposition modeling, stereolithography) • Additive manufacturing of structural and active Materials | ||||
Literatur | • Kalpakjian, Schmid, Werner, Werkstofftechnik • Ashby, Materials Selection in Mechanical Design • Meyers, Chawla, Mechanical Behavior of Materials • Rösler, Harders, Bäker, Mechanisches Verhalten der Werkstoffe |