André R. Studart: Katalogdaten im Frühjahrssemester 2021

NameHerr Prof. Dr. André R. Studart
LehrgebietKomplexe Materialien
Complex Materials
ETH Zürich, HCI G 537
Vladimir-Prelog-Weg 1-5/10
8093 Zürich
Telefon+41 44 633 70 50
Fax+41 44 633 15 45
BeziehungOrdentlicher Professor

327-0503-AALCeramics I
Belegung ist NUR erlaubt für MSc Studierende, die diese Lerneinheit als Auflagenfach verfügt haben.

Alle anderen Studierenden (u.a. auch Mobilitätsstudierende, Doktorierende) können diese Lerneinheit NICHT belegen.
3 KP6RM. Niederberger, T. Graule, A. R. Studart
KurzbeschreibungIntroduction to ceramic processing
LernzielThe aim is the understanding of the basic principles of ceramic processing
InhaltBasic chemical processes for powder production.
Liquid-phase synthesis methods.
Sol-Gel processes.
Solubility product.
Principle of Le Chatelier.
Classical crystallization theory.
Gas phase reactions.
Basics of the collidal chemistry for suspension preparation and control.
Characterization techniques for powders and colloids.
Shaping techniques for bulk components and thin films.
Sintering processes and microstructural control.
LiteraturAdditional references are given on the lecture notes.
327-0603-00LCeramics II
Wird voraussichtlich im FS 2022 letztmals angeboten.
3 KP2V + 1UA. R. Studart, K. Conder
KurzbeschreibungUnderstanding of the electrical, dielectric and magnetic properties of functional ceramics for materials engineers, physicists and electrical engineers. An introduction is given to modern ceramics materials with multiple functions.
LernzielCeramics II covers the basic principles of functional ceramics such as linear and non-linear dielectrics, semiconductors, ionic and mixed ionic-electronic conductors as well as materials aspects of high temperature superconductors. Examples of applications cover the range from piezo-, pyro and thermoelectric materials over sensors and solid oxide fuel cells to superconducting magnets.
At the end of the course, the students should be able to select the chemistry, design the microstructure and devise processing routes to fabricate functional ceramics for electronic, electromechanical, optical and magnetic applications.
Inhalt- Applications of functional ceramics
- Dieletrics fundamentals & insulators
- Capacitors & resonators
- Ferroelectricity & piezoelectricity
- Pyroelectricity and thermoelectric ceramics
- Defect chemistry
- Conductors
- Impedance spectroscopy
- Magnetic ceramics
- Superconductors
LiteraturElectroceramics; J.A.Moulson
Free download of the book in ETH domain is possible following the link:

Principles of Electronic Ceramics; L.L.Hench, J.K.West
327-3002-00LMaterials for Mechanical Engineers4 KP2V + 1UR. Spolenak, A. R. Studart, R. Style
KurzbeschreibungThis course provides a basic foundation in materials science for mechanical engineers. Students learns how to select the right material for the application at hand. In addition, the appropriate processing-microstructure-property relationship will lead to the fundamental understanding of concepts that determines the mechanical and functional properties.
LernzielAt the end of the course, the student will able to:
• choose the appropriate material for mechanical engineering applications
• find the optimal compromise between materials property, cost and ecological impact
• understand the most important concepts that allow for the tuning of mechanical and functional properties of materials
InhaltBlock A: Materials Selection
• Principles of Materials Selection
• Introduction to the Cambridge Engineering Selector
• Cost optimization and penalty functions
• Ecoselection

Block B: Mechanical properties across materials classes
• Young's modulus from 1 Pa to 1 TPa
• Failure: yield strength, toughness, fracture toughness, and fracture energy
• Strategies to toughen materials from gels to metals.

Block C: Structural Light Weight Materials
• Aluminum and magnesium alloys
• Engineering and fiber-reinforced polymers

Block D: Structural Materials in the Body
• Strength, stiffness and wear resistance
• Processing, structure and properties of load-bearing implants

Block E: Structural High Temperature Materials
• Superalloys and refractory metals
• Structural high-temperature ceramics

Block F: Materials for Sensors
• Semiconductors
• Piezoelectrica

Block G: Dissipative dynamics and bonding
• Frequency dependent materials properties (from rheology of soft materials to vibration damping in structural materials)
• Adhesion energy and contact mechanics
• Peeling and delamination

Block H: Materials for 3D Printing
• Deposition methods and their consequences for materials (deposition by sintering, direct ink writing, fused deposition modeling, stereolithography)
• Additive manufacturing of structural and active Materials
Literatur• Kalpakjian, Schmid, Werner, Werkstofftechnik
• Ashby, Materials Selection in Mechanical Design
• Meyers, Chawla, Mechanical Behavior of Materials
• Rösler, Harders, Bäker, Mechanisches Verhalten der Werkstoffe