Marcy Zenobi-Wong: Katalogdaten im Herbstsemester 2022 |
Name | Frau Prof. Dr. Marcy Zenobi-Wong |
Lehrgebiet | Knorpeltechnologie und -regeneration |
Adresse | Gewebetechnol. und Biofabrikation ETH Zürich, HPL J 22 Otto-Stern-Weg 7 8093 Zürich SWITZERLAND |
Telefon | +41 44 632 50 89 |
marcy.zenobi@hest.ethz.ch | |
URL | https://biofabrication.ethz.ch/ |
Departement | Gesundheitswissenschaften und Technologie |
Beziehung | Ordentliche Professorin |
Nummer | Titel | ECTS | Umfang | Dozierende | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
227-0386-00L | Biomedical Engineering | 4 KP | 3G | J. Vörös, S. J. Ferguson, S. Kozerke, M. P. Wolf, M. Zenobi-Wong | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | Introduction into selected topics of biomedical engineering as well as their relationship with physics and physiology. The focus is on learning the basic vocabulary of biomedical engineering and getting familiar with concepts that govern common medical instruments and the most important organs from an engineering point of view. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | Introduction into selected topics of biomedical engineering as well as their relationship with physics and physiology. The course provides an overview of the various topics of the different tracks of the biomedical engineering master course and helps orienting the students in selecting their specialized classes and project locations. It also serves as an introduction to the field for students of the ITET, MAVT, HEST and other bachelor programs. In addition, the most recent achievements and trends of the field of biomedical engineering are also outlined. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | History of BME and the role of biomedical engineers. Ethical issues related to BME. Biomedical sensors both wearable and also biochemical sensors. Bioelectronics: Nernst equation, Donnan equilibrium, equivalent circuits of biological membranes and bioelectronic devices. Bioinformatics: genomic and proteomic tools, databases and basic calculations. Equations describing basic reactions and enzyme kinetics. Medical optics: Optical components and systems used in hospitals. Basic concepts of tissue engineering and organ printing. Biomaterials and their medical applications. Function of the heart and the circulatory system. Transport and exchange of substances in the human body, compartment modeling. The respiratory system. Bioimaging. Orthopedic biomechanics. Lectures (2h), discussion of practical exercises (1h) and homework exercises. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | Introduction to Biomedical Engineering by Enderle, Banchard, and Bronzino AND moodle page of the course | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Voraussetzungen / Besonderes | No specific requirements, BUT ITET, MAVT, PHYS students will have to learn a lot of new words related to biochemistry, biology and medicine, while HEST and BIOL students will have to grasp basic engineering concepts (circuits, equations, etc.). | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kompetenzen |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
376-0021-00L | Materials and Mechanics in Medicine | 4 KP | 3G | M. Zenobi-Wong, J. G. Snedeker | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | Understanding of physical and technical principles in biomechanics, biomaterials, and tissue engineering as well as a historical perspective. Mathematical description and problem solving. Knowledge of biomedical engineering applications in research and clinical practice. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | Understanding of physical and technical principles in biomechanics, biomaterials, tissue engineering. Mathematical description and problem solving. Knowledge of biomedical engineering applications in research and clinical practice. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | Biomaterials, Tissue Engineering, Tissue Biomechanics, Implants. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | course website on Moodle | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literatur | Introduction to Biomedical Engineering, 3rd Edition 2011, Autor: John Enderle, Joseph Bronzino, ISBN 9780123749796 Academic Press | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
376-1622-00L | Practical Methods in Tissue Engineering Number of participants limited to 12. | 5 KP | 4P | M. Zenobi-Wong, S. J. Ferguson, S. Grad, S. Schürle-Finke | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | The goal of this course is to teach MSc students the necessary skills for doing research in the fields of tissue engineering and regenerative medicine. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | Practical exercises on topics including sterile cell culture, light microscopy and histology, and biomaterials are covered. Practical work on manufacturing and evaluating hydrogels and scaffolds for tissue engineering will be performed in small groups. In addition to practical lab work, the course will teach skills in data acquisition/analysis. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Voraussetzungen / Besonderes | A Windows laptop (or Windows on Mac) is required for certain of the lab modules. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
376-1714-AAL | Biocompatible Materials Belegung ist NUR erlaubt für MSc Studierende, die diese Lerneinheit als Auflagenfach verfügt haben. Alle anderen Studierenden (u.a. auch Mobilitätsstudierende, Doktorierende) können diese Lerneinheit NICHT belegen. | 4 KP | 9R | K. Maniura, M. Zenobi-Wong | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | Introduction to molecules used for biomaterials, molecular interactions between different materials and biological systems (molecules, cells, tissues). The concept of biocompatibility is discussed and important techniques from biomaterials research and development are introduced. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | The course covers the follwing topics: 1. Introdcution into molecular characteristics of molecules involved in the materials-to-biology interface. Molecular design of biomaterials. 2. The concept of biocompatibility. 3. Introduction into methodology used in biomaterials research and application. 4. Introduction to different material classes in use for medical applications. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | Introduction into natural and polymeric biomaterials used for medical applications. The concepts of biocompatibility, biodegradation and the consequences of degradation products are discussed on the molecular level. Different classes of materials with respect to potential applications in tissue engineering, drug delivery and for medical devices are introduced. Strong focus lies on the molecular interactions between materials having very different bulk and/or surface chemistry with living cells, tissues and organs. In particular the interface between the materials surfaces and the eukaryotic cell surface and possible reactions of the cells with an implant material are elucidated. Techniques to design, produce and characterize materials in vitro as well as in vivo analysis of implanted and explanted materials are discussed. A link between academic research and industrial entrepreneurship is demonstrated by external guest speakers, who present their current research topics. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | Handouts are deposited online (moodle). | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literatur | Literature: - Biomaterials Science: An Introduction to Materials in Medicine, Ratner B.D. et al, 3rd Edition, 2013 - Comprehensive Biomaterials, Ducheyne P. et al., 1st Edition, 2011 (available online via ETH library) Handouts and references therin. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
376-1714-00L | Biocompatible Materials | 4 KP | 3V | K. Maniura, M. Rottmar, M. Zenobi-Wong | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | Introduction to molecules used for biomaterials, molecular interactions between different materials and biological systems (molecules, cells, tissues). The concept of biocompatibility is discussed and important techniques from biomaterials research and development are introduced. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | The course covers the follwing topics: 1. Introdcution into molecular characteristics of molecules involved in the materials-to-biology interface. Molecular design of biomaterials. 2. The concept of biocompatibility. 3. Introduction into methodology used in biomaterials research and application. 4. Introduction to different material classes in use for medical applications. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | Introduction into natural and polymeric biomaterials used for medical applications. The concepts of biocompatibility, biodegradation and the consequences of degradation products are discussed on the molecular level. Different classes of materials with respect to potential applications in tissue engineering, drug delivery and for medical devices are introduced. Strong focus lies on the molecular interactions between materials having very different bulk and/or surface chemistry with living cells, tissues and organs. In particular the interface between the materials surfaces and the eukaryotic cell surface and possible reactions of the cells with an implant material are elucidated. Techniques to design, produce and characterize materials in vitro as well as in vivo analysis of implanted and explanted materials are discussed. A link between academic research and industrial entrepreneurship is demonstrated by external guest speakers, who present their current research topics. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Skript | Handouts are deposited online (moodle). | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literatur | Literature: - Biomaterials Science: An Introduction to Materials in Medicine, Ratner B.D. et al, 3rd Edition, 2013 - Comprehensive Biomaterials, Ducheyne P. et al., 1st Edition, 2011 (available online via ETH library) Handouts and references therin. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
376-1974-00L | Colloquium in Biomechanics | 2 KP | 2K | B. Helgason, P. Chansoria, S. J. Ferguson, R. Müller, D. K. Ravi, J. G. Snedeker, W. R. Taylor, M. Zenobi-Wong | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | Current topics in biomechanics presented by speakers from academia and industry. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | Getting insight into actual areas and problems of biomechanics. |