Giuseppe Storti: Katalogdaten im Herbstsemester 2019 |
Name | Herr Prof. em. Dr. Giuseppe Storti |
giuseppe.storti@chem.ethz.ch | |
Departement | Chemie und Angewandte Biowissenschaften |
Beziehung | Titularprofessor im Ruhestand |
Nummer | Titel | ECTS | Umfang | Dozierende | |
---|---|---|---|---|---|
529-0643-00L | Process Design and Development Only for Chemical and Bioengineering MSc, Programme Regulations 2005. IMPORTANT NOTICE for Chemical and Bioengineering students: There are two different version of this course for the two regulations (2005/2018), please make sure to register for the correct version according to the regulations you are enrolled in. | 7 KP | 3G | G. Storti | |
Kurzbeschreibung | The course is focused on the design of Chemical Processes, with emphasis on the preliminary stage of the design approach, where process creation and quick selection among many alternatives are important. The main concepts behind more detailed process design and process simulation are also examined in the last part of the course. | ||||
Lernziel | The course is focused on the design of Chemical Processes, with emphasis on the preliminary stage of the design approach, where process creation and quick selection among many alternatives are important. The main concepts behind more detailed process design and process simulation are also examined in the last part of the course. | ||||
Inhalt | Process creation: decomposition strategies (reduction of differences - vinyl chloride production and hierarchical decomposition - ethanol production). Identification of the "base case design". Heuristics for process synthesis. Preliminary process evaluation: simplified material and energy balances (linear balances), degrees of freedom, short-cut models, flowsheet solution algorithm). Process Integration: sequencing of distillation columns, synthesis of heat exchanger networks. Process economic evaluation: equipment sizing and costing, time value of money, cash flow calculations. Batch Processes: scheduling, sizing and inventories. Detailed Process Design: unit operation models, flash solution algorithms (different iterative methods, inside-out method), sequencing of nonideal distillation columns, networks of chemical reactors. | ||||
Skript | no script | ||||
Literatur | L.T.Biegler et al., Systematic Methods of Chemical Process Design, Prentice Hall, 1997. W.D.Seider et al., Process Design Principles, J. Wiley & Sons, 1998. J.M.Douglas, Conceptual Design of Chemical Processes, McGraw-Hill, 1988. | ||||
Voraussetzungen / Besonderes | Prerequisite: Thermal Unit Operations | ||||
529-0643-01L | Process Design and Development IMPORTANT NOTICE for Chemical and Bioengineering students: There are two different version of this course for the two regulations (2005/2018), please make sure to register for the correct version according to the regulations you are enrolled in. Please do not register for this course if you are enrolled in regulations 2005. | 6 KP | 3G | G. Storti | |
Kurzbeschreibung | The course is focused on the design of Chemical Processes, with emphasis on the preliminary stage of the design approach, where process creation and quick selection among many alternatives are important. The main concepts behind more detailed process design and process simulation are also examined in the last part of the course. | ||||
Lernziel | The course is focused on the design of Chemical Processes, with emphasis on the preliminary stage of the design approach, where process creation and quick selection among many alternatives are important. The main concepts behind more detailed process design and process simulation are also examined in the last part of the course. | ||||
Inhalt | Process creation: decomposition strategies (reduction of differences - vinyl chloride production and hierarchical decomposition - ethanol production). Identification of the "base case design". Heuristics for process synthesis. Preliminary process evaluation: simplified material and energy balances (linear balances), degrees of freedom, short-cut models, flowsheet solution algorithm). Process Integration: sequencing of distillation columns, synthesis of heat exchanger networks. Process economic evaluation: equipment sizing and costing, time value of money, cash flow calculations. Batch Processes: scheduling, sizing and inventories. Detailed Process Design: unit operation models, flash solution algorithms (different iterative methods, inside-out method), sequencing of nonideal distillation columns, networks of chemical reactors. | ||||
Skript | no script | ||||
Literatur | L.T.Biegler et al., Systematic Methods of Chemical Process Design, Prentice Hall, 1997. W.D.Seider et al., Process Design Principles, J. Wiley & Sons, 1998. J.M.Douglas, Conceptual Design of Chemical Processes, McGraw-Hill, 1988. | ||||
Voraussetzungen / Besonderes | Prerequisite: Thermal Unit Operations |