Alain-Sol Sznitman: Katalogdaten im Herbstsemester 2017 |
Name | Herr Prof. em. Dr. Alain-Sol Sznitman |
Lehrgebiet | Mathematik |
Adresse | Dep. Mathematik ETH Zürich, HG G 50.1 Rämistrasse 101 8092 Zürich SWITZERLAND |
Telefon | +41 44 633 81 48 |
Fax | +41 44 632 10 85 |
alain-sol.sznitman@math.ethz.ch | |
URL | http://www.math.ethz.ch/~alains |
Departement | Mathematik |
Beziehung | Professor emeritus |
Nummer | Titel | ECTS | Umfang | Dozierende | |
---|---|---|---|---|---|
401-3601-00L | Probability Theory Höchstens eines der drei Bachelor-Kernfächer 401-3461-00L Funktionalanalysis I / Functional Analysis I 401-3531-00L Differentialgeometrie I / Differential Geometry I 401-3601-00L Wahrscheinlichkeitstheorie / Probability Theory ist im Master-Studiengang Mathematik anrechenbar. | 10 KP | 4V + 1U | A.‑S. Sznitman | |
Kurzbeschreibung | Basics of probability theory and the theory of stochastic processes in discrete time | ||||
Lernziel | This course presents the basics of probability theory and the theory of stochastic processes in discrete time. The following topics are planned: Basics in measure theory, random series, law of large numbers, weak convergence, characteristic functions, central limit theorem, conditional expectation, martingales, convergence theorems for martingales, Galton Watson chain, transition probability, Theorem of Ionescu Tulcea, Markov chains. | ||||
Inhalt | This course presents the basics of probability theory and the theory of stochastic processes in discrete time. The following topics are planned: Basics in measure theory, random series, law of large numbers, weak convergence, characteristic functions, central limit theorem, conditional expectation, martingales, convergence theorems for martingales, Galton Watson chain, transition probability, Theorem of Ionescu Tulcea, Markov chains. | ||||
Skript | available, will be sold in the course | ||||
Literatur | R. Durrett, Probability: Theory and examples, Duxbury Press 1996 H. Bauer, Probability Theory, de Gruyter 1996 J. Jacod and P. Protter, Probability essentials, Springer 2004 A. Klenke, Wahrscheinlichkeitstheorie, Springer 2006 D. Williams, Probability with martingales, Cambridge University Press 1991 | ||||
401-4600-67L | Student Seminar in Probability Limited number of participants. Registration to the seminar will only be effective once confirmed by email from the organizers. | 4 KP | 2S | A.‑S. Sznitman, J. Bertoin, V. Tassion, W. Werner | |
Kurzbeschreibung | |||||
Lernziel | |||||
Inhalt | The seminar is centered around a topic in probability theory which changes each semester. | ||||
Voraussetzungen / Besonderes | The student seminar in probability is held at times at the undergraduate level (typically during the spring term) and at times at the graduate level (typically during the autumn term). The themes vary each semester. The number of participants to the seminar is limited. Registration to the seminar will only be effective once confirmed by email from the organizers. | ||||
401-5600-00L | Seminar on Stochastic Processes | 0 KP | 1K | J. Bertoin, A. Nikeghbali, B. D. Schlein, A.‑S. Sznitman, V. Tassion, W. Werner | |
Kurzbeschreibung | Research colloquium | ||||
Lernziel |