Leif Tokle: Katalogdaten im Herbstsemester 2023 |
Name | Herr Dr. Leif Tokle |
Adresse | Professur Strukturgeol u.Tektonik ETH Zürich, NO E 65 Sonneggstrasse 5 8092 Zürich SWITZERLAND |
Telefon | +41 44 632 84 23 |
leif.tokle@eaps.ethz.ch | |
Departement | Erd- und Planetenwissenschaften |
Beziehung | Dozent |
Nummer | Titel | ECTS | Umfang | Dozierende | |
---|---|---|---|---|---|
651-4111-00L | Experimental Rock Physics and Deformation | 3 KP | 2G | L. Tokle, C. Madonna, A. S. Zappone | |
Kurzbeschreibung | We illustrate some physical properties, deformation mechanisms, and define flow laws. We show the fundamental techniques for the measurement in laboratory of density, permeability, elastic properties and deformation. We presented actual case studies and discuss upscaling from laboratory to field. | ||||
Lernziel | The objective of this course is to introduce rock physics and rock deformation, and discuss the aid of laboratory tests to interpretation at large scale . Rock Physics provides the understanding to connect geomechanical and geophysical data to the intrinsic properties of rocks, such as mineral composition and texture. Rock Physics is a key component in geo-resources exploration and exploitation, and in geo-hazard assessment. For rock deformation we will illustrate how to determined flow-laws of rocks from experiments and how to extrapolate to natural conditions. Since the time scale of laboratory experiments is several orders of magnitude faster than nature, we will compare the microstructure of natural rocks with that produced during the experiments to prove that the same mechanisms are operating. For this purpose, the fundamental techniques of experimental rock deformation will be illustrated and test on natural rock samples in the plastic deformation regime (high temperature) as well in the brittle regime ( room temperature) will be presented. We will perform tests in the lab, to acquire the data, to correct for calibration and to process the data and finally to interpret the data. The course is at Master student level, but will be useful for PhDs students who want to begin to work in experimental deformation or who want to know the meaning and the limitation of laboratory flow-laws for geodynamic modelling | ||||
Inhalt | The course will focus on research-based term project, lectures will alternate with laboratory demonstrations. We will illustrate how intrinsic properties of rocks (mineral composition, porosity, pore fluids, crystallographic orientation, microstructures) are connected to the following physical properties: - permeability; - elastic properties for seismic interpretations; - anisotropy of the above physical properties. We will measure some of those parameters in laboratory and discuss real case studies and applications. Principles of deformation mechanisms, flow laws, and deformation mechanism maps will be presented in lectures. In laboratory we will show: - Experimental deformation rigs (gas, fluid and solid confining media); - Main part of the apparatus (mechanical, hydraulic, heating system, data logging); - Calibration of an apparatus (distortion of the rig; transducers calibration); - Various types of tests (axial deformation; diagonal cut and torsion; deformation; constant strain rate tests; creep tests; stepping tests); | ||||
Voraussetzungen / Besonderes | The course of Structural Geology (651-3422-00L) is highly recommended before attending this course. Moreover the students should have basic knowledge in geophysics and mineralogy/crystallography. In doubt, please contact the course responsible beforehand. |