Joaquim Serra: Catalogue data in Spring Semester 2023

Name Prof. Dr. Joaquim Serra
FieldMathematics
Address
Professur für Mathematik
ETH Zürich, HG J 54
Rämistrasse 101
8092 Zürich
SWITZERLAND
Telephone+41 44 632 50 60
E-mailjoaquim.serra@math.ethz.ch
DepartmentMathematics
RelationshipAssociate Professor

NumberTitleECTSHoursLecturers
401-3532-DRLDifferential Geometry II Information Restricted registration - show details
Only for ETH D-MATH doctoral students and for doctoral students from the Institute of Mathematics at UZH. The latter need to send an email to Jessica Bolsinger (info@zgsm.ch) with the course number. The email should have the subject „Graduate course registration (ETH)“.
3 credits4V + 1UJ. Serra
AbstractThis is a continuation course of Differential Geometry I. Topics covered include:
Introduction to Riemannian geometry: Riemannian manifolds, Levi-Civita connection, geodesics, Hopf-Rinow Theorem, curvature, second fundamental form, Riemannian submersions and coverings, Hadamard-Cartan Theorem, triangle and volume comparison, and isoperimetric inequalities.
Learning objectiveProviding an introductory invitation to Riemannian geometry.
Literature- M. P. do Carmo, Riemannian Geometry, Birkhäuser 1992
- I. Chavel, "Riemannian Geometry: A Modern Introduction" 2nd ed. (2006), CUP,
- S. Gallot, D. Hulin, J. Lafontaine, Riemannian Geometry, Springer 2004
- S. Kobayashi, K. Nomizu "Foundations of Differential Geometry" Volume I (1963) Wiley,
Prerequisites / NoticeDifferential Geometry I (or basics of differentiable manifolds)
401-3532-08LDifferential Geometry II Information 10 credits4V + 1UJ. Serra
AbstractThis is a continuation course of Differential Geometry I. Topics covered include:
Introduction to Riemannian geometry: Riemannian manifolds, Levi-Civita connection, geodesics, Hopf-Rinow Theorem, curvature, second fundamental form, Riemannian submersions and coverings, Hadamard-Cartan Theorem, triangle and volume comparison, and isoperimetric inequalities.
Learning objectiveProviding an introductory invitation to Riemannian geometry.
Literature- M. P. do Carmo, Riemannian Geometry, Birkhäuser 1992
- I. Chavel, "Riemannian Geometry: A Modern Introduction" 2nd ed. (2006), CUP,
- S. Gallot, D. Hulin, J. Lafontaine, Riemannian Geometry, Springer 2004
- S. Kobayashi, K. Nomizu "Foundations of Differential Geometry" Volume I (1963) Wiley,
Prerequisites / NoticeDifferential Geometry I (or basics of differentiable manifolds)
401-5350-00LAnalysis Seminar Information 0 credits1KF. Da Lio, A. Figalli, N. Hungerbühler, M. Iacobelli, T. Ilmanen, T. Rivière, J. Serra, University lecturers
AbstractResearch colloquium
Learning objective
ContentResearch seminar in Analysis