Joaquim Serra: Katalogdaten im Frühjahrssemester 2023 |
Name | Herr Prof. Dr. Joaquim Serra |
Lehrgebiet | Mathematik |
Adresse | Professur für Mathematik ETH Zürich, HG J 54 Rämistrasse 101 8092 Zürich SWITZERLAND |
Telefon | +41 44 632 50 60 |
joaquim.serra@math.ethz.ch | |
Departement | Mathematik |
Beziehung | Ausserordentlicher Professor |
Nummer | Titel | ECTS | Umfang | Dozierende | |
---|---|---|---|---|---|
401-3532-DRL | Differential Geometry II Only for ETH D-MATH doctoral students and for doctoral students from the Institute of Mathematics at UZH. The latter need to send an email to Jessica Bolsinger (info@zgsm.ch) with the course number. The email should have the subject „Graduate course registration (ETH)“. | 3 KP | 4V + 1U | J. Serra | |
Kurzbeschreibung | This is a continuation course of Differential Geometry I. Topics covered include: Introduction to Riemannian geometry: Riemannian manifolds, Levi-Civita connection, geodesics, Hopf-Rinow Theorem, curvature, second fundamental form, Riemannian submersions and coverings, Hadamard-Cartan Theorem, triangle and volume comparison, and isoperimetric inequalities. | ||||
Lernziel | Providing an introductory invitation to Riemannian geometry. | ||||
Literatur | - M. P. do Carmo, Riemannian Geometry, Birkhäuser 1992 - I. Chavel, "Riemannian Geometry: A Modern Introduction" 2nd ed. (2006), CUP, - S. Gallot, D. Hulin, J. Lafontaine, Riemannian Geometry, Springer 2004 - S. Kobayashi, K. Nomizu "Foundations of Differential Geometry" Volume I (1963) Wiley, | ||||
Voraussetzungen / Besonderes | Differential Geometry I (or basics of differentiable manifolds) | ||||
401-3532-08L | Differential Geometry II | 10 KP | 4V + 1U | J. Serra | |
Kurzbeschreibung | This is a continuation course of Differential Geometry I. Topics covered include: Introduction to Riemannian geometry: Riemannian manifolds, Levi-Civita connection, geodesics, Hopf-Rinow Theorem, curvature, second fundamental form, Riemannian submersions and coverings, Hadamard-Cartan Theorem, triangle and volume comparison, and isoperimetric inequalities. | ||||
Lernziel | Providing an introductory invitation to Riemannian geometry. | ||||
Literatur | - M. P. do Carmo, Riemannian Geometry, Birkhäuser 1992 - I. Chavel, "Riemannian Geometry: A Modern Introduction" 2nd ed. (2006), CUP, - S. Gallot, D. Hulin, J. Lafontaine, Riemannian Geometry, Springer 2004 - S. Kobayashi, K. Nomizu "Foundations of Differential Geometry" Volume I (1963) Wiley, | ||||
Voraussetzungen / Besonderes | Differential Geometry I (or basics of differentiable manifolds) | ||||
401-5350-00L | Analysis Seminar | 0 KP | 1K | F. Da Lio, A. Figalli, N. Hungerbühler, M. Iacobelli, T. Ilmanen, T. Rivière, J. Serra, Uni-Dozierende | |
Kurzbeschreibung | Forschungskolloquium | ||||
Lernziel | |||||
Inhalt | Research seminar in Analysis |