Filippo Coletti: Katalogdaten im Frühjahrssemester 2021

NameHerr Prof. Dr. Filippo Coletti
LehrgebietExperimentelle Fluiddynamik
Adresse
Experimentelle Fluiddynamik
ETH Zürich, ML H 35
Sonneggstrasse 3
8092 Zürich
SWITZERLAND
Telefon+41 44 633 76 24
E-Mailfcoletti@ethz.ch
DepartementMaschinenbau und Verfahrenstechnik
BeziehungAusserordentlicher Professor

NummerTitelECTSUmfangDozierende
151-0111-00LResearch Seminar in Fluid Dynamics
Internes Forschungsseminar für Doktoranden und wissenschaftliche Mitarbeiter des IFD.
0 KP2SF. Coletti, P. Jenny, T. Rösgen, O. Supponen
KurzbeschreibungCurrent research projects at the Institute of Fluid Dynamics are presented and discussed.
LernzielExchange on current internal research projects. Training of presentation skills.
InhaltCurrent research projects in Fluid Dynamics
151-0170-00LComputational Multiphase Thermal Fluid Dynamics4 KP2V + 1UF. Coletti, A. Dehbi, Y. Sato
KurzbeschreibungThe course deals with fundamentals of the application of Computational Fluid Dynamics to gas-liquid flows as well as particle laden gas flows including aerosols. The course will present the current state of art in the field. Challenging examples, mainly from the fluid-machinery and plant, are discussed in detail.
LernzielFundamentals of 3D multiphase flows (Definitions, Averages, Flow regimes), mathematical models (two-fluid model, Euler-Euler and Euler-Lagrange techniques), modeling of dispersed bubble flows (inter-phase forces, population balance and multi-bubble size class models), turbulence modeling, stratified and free-surface flows (interface tracking techniques such as VOF, level-sets and variants, modeling of surface tension), particulate and aerosol flows, particle tracking, one and two way coupling, random walk techniques to couple particle tracking with turbulence models, numerical methods and tools, industrial applications.
151-1906-00LMultiphase Flows4 KP3GF. Coletti
KurzbeschreibungIntroduction to fluid flows with multiple interacting phases. The emphasis is on regimes where a dispersed phase is carried by a continuous one: e.g., particles, bubbles and droplets suspended in gas or liquid flows, laminar or turbulent. The flow physics is put in the context of natural, biological, and industrial problems.
LernzielThe main learning objectives are:
- identify multiphase flow regimes and relevant non-dimensional parameters
- distinguish spatio-temporal scales at play for each phase
- quantify mutual coupling between different phases
- apply fundamental principles in complex real-world flows
- combine insight from theory, experiments, and numerics
InhaltSingle particle and multi-particle dynamics in laminar and turbulent flows; basics of suspension rheology; effects of surface tension on the formation, evolution and motion of bubbles and droplets; free-surface flows and wind-wave interaction; imaging techniques and modeling approaches.
SkriptLecture slides are made available.
LiteraturSuggested readings are provided for each topic.
Voraussetzungen / BesonderesFundamental knowledge of fluid dynamics is essential.