Peter Burgherr: Catalogue data in Spring Semester 2020 |
Name | Dr. Peter Burgherr |
Address | Paul Scherrer Institut (PSI) Forschungsstrasse 111 5232 Villigen PSI SWITZERLAND |
Telephone | 056 310 26 49 |
pburgherr@ethz.ch | |
Department | Mechanical and Process Engineering |
Relationship | Lecturer |
Number | Title | ECTS | Hours | Lecturers | |
---|---|---|---|---|---|
151-0160-00L | Nuclear Energy Systems | 4 credits | 2V + 1U | H.‑M. Prasser, P. Burgherr, I. Günther-Leopold, W. Hummel, T. Kämpfer, T. Kober, X. Zhang | |
Abstract | Nuclear energy and sustainability, uranium production, uranium enrichment, nuclear fuel production, reprocessing of spent fuel, nuclear waste disposal, Life Cycle Analysis, energy and materials balance of Nuclear Power Plants. | ||||
Learning objective | Students get an overview on the physical and chemical fundamentals, the technological processes and the environmental impact of the full energy conversion chain of nuclear power generation. The are enabled to assess to potentials and risks arising from embedding nuclear power in a complex energy system. | ||||
Content | (1) survey on the cosmic and geological origin of uranium, methods of uranium mining, separation of uranium from the ore, (2) enrichment of uranium (diffusion cells, ultra-centrifuges, alternative methods), chemical conversion uranium oxid - fluorid - oxid, fuel rod fabrication processes, (3) fuel reprocessing (hydrochemical, pyrochemical) including modern developments of deep partitioning as well as methods to treat and minimize the amount and radiotoxicity of nuclear waste. (4) nuclear waste disposal, waste categories and origin, geological and engineered barriers in deep geological repositories, the project of a deep geological disposal for radioactive waste in Switzerland, (5) methods to measure the sustainability of energy systems, comparison of nuclear energy with other energy sources, environmental impact of the nuclear energy system as a whole, including the question of CO2 emissions, CO2 reduction costs, radioactive releases from the power plant, the fuel chain and the final disposal. The material balance of different fuel cycles with thermal and fast reactors isdiscussed. | ||||
Lecture notes | Lecture slides will be distributed as handouts and in digital form |