Robert Style: Katalogdaten im Frühjahrssemester 2021 |
Name | Herr Dr. Robert Style |
Adresse | Weiche und Lebende Materialien ETH Zürich, HCI H 537 Vladimir-Prelog-Weg 1-5/10 8093 Zürich SWITZERLAND |
Telefon | +41 44 633 92 18 |
robert.style@mat.ethz.ch | |
Departement | Materialwissenschaft |
Beziehung | Dozent |
Nummer | Titel | ECTS | Umfang | Dozierende | |
---|---|---|---|---|---|
327-3002-00L | Materials for Mechanical Engineers | 4 KP | 2V + 1U | R. Spolenak, A. R. Studart, R. Style | |
Kurzbeschreibung | This course provides a basic foundation in materials science for mechanical engineers. Students learns how to select the right material for the application at hand. In addition, the appropriate processing-microstructure-property relationship will lead to the fundamental understanding of concepts that determines the mechanical and functional properties. | ||||
Lernziel | At the end of the course, the student will able to: • choose the appropriate material for mechanical engineering applications • find the optimal compromise between materials property, cost and ecological impact • understand the most important concepts that allow for the tuning of mechanical and functional properties of materials | ||||
Inhalt | Block A: Materials Selection • Principles of Materials Selection • Introduction to the Cambridge Engineering Selector • Cost optimization and penalty functions • Ecoselection Block B: Mechanical properties across materials classes • Young's modulus from 1 Pa to 1 TPa • Failure: yield strength, toughness, fracture toughness, and fracture energy • Strategies to toughen materials from gels to metals. Block C: Structural Light Weight Materials • Aluminum and magnesium alloys • Engineering and fiber-reinforced polymers Block D: Structural Materials in the Body • Strength, stiffness and wear resistance • Processing, structure and properties of load-bearing implants Block E: Structural High Temperature Materials • Superalloys and refractory metals • Structural high-temperature ceramics Block F: Materials for Sensors • Semiconductors • Piezoelectrica Block G: Dissipative dynamics and bonding • Frequency dependent materials properties (from rheology of soft materials to vibration damping in structural materials) • Adhesion energy and contact mechanics • Peeling and delamination Block H: Materials for 3D Printing • Deposition methods and their consequences for materials (deposition by sintering, direct ink writing, fused deposition modeling, stereolithography) • Additive manufacturing of structural and active Materials | ||||
Literatur | • Kalpakjian, Schmid, Werner, Werkstofftechnik • Ashby, Materials Selection in Mechanical Design • Meyers, Chawla, Mechanical Behavior of Materials • Rösler, Harders, Bäker, Mechanisches Verhalten der Werkstoffe |