Siyu Tang: Katalogdaten im Frühjahrssemester 2021

NameFrau Prof. Dr. Siyu Tang
LehrgebietComputer Vision
Adresse
Professur für Computer Vision
ETH Zürich, CNB G 104
Universitätstrasse 6
8092 Zürich
SWITZERLAND
E-Mailsiyu.tang@inf.ethz.ch
URLhttps://vlg.inf.ethz.ch
DepartementInformatik
BeziehungAssistenzprofessorin (Tenure Track)

NummerTitelECTSUmfangDozierende
263-3710-00LMachine Perception Information Belegung eingeschränkt - Details anzeigen
Number of participants limited to 200.
8 KP3V + 2U + 2AO. Hilliges, S. Tang
KurzbeschreibungRecent developments in neural networks (aka “deep learning”) have drastically advanced the performance of machine perception systems in a variety of areas including computer vision, robotics, and intelligent UIs. This course is a deep dive into deep learning algorithms and architectures with applications to a variety of perceptual tasks.
LernzielStudents will learn about fundamental aspects of modern deep learning approaches for perception. Students will learn to implement, train and debug their own neural networks and gain a detailed understanding of cutting-edge research in learning-based computer vision, robotics and HCI. The final project assignment will involve training a complex neural network architecture and applying it on a real-world dataset of human activity.

The core competency acquired through this course is a solid foundation in deep-learning algorithms to process and interpret human input into computing systems. In particular, students should be able to develop systems that deal with the problem of recognizing people in images, detecting and describing body parts, inferring their spatial configuration, performing action/gesture recognition from still images or image sequences, also considering multi-modal data, among others.
InhaltWe will focus on teaching: how to set up the problem of machine perception, the learning algorithms, network architectures and advanced deep learning concepts in particular probabilistic deep learning models

The course covers the following main areas:
I) Foundations of deep-learning.
II) Probabilistic deep-learning for generative modelling of data (latent variable models, generative adversarial networks and auto-regressive models).
III) Deep learning in computer vision, human-computer interaction and robotics.

Specific topics include: 
I) Deep learning basics:
a) Neural Networks and training (i.e., backpropagation)
b) Feedforward Networks
c) Timeseries modelling (RNN, GRU, LSTM)
d) Convolutional Neural Networks for classification
II) Probabilistic Deep Learning:
a) Latent variable models (VAEs)
b) Generative adversarial networks (GANs)
c) Autoregressive models (PixelCNN, PixelRNN, TCNs)
III) Deep Learning techniques for machine perception:
a) Fully Convolutional architectures for dense per-pixel tasks (i.e., instance segmentation)
b) Pose estimation and other tasks involving human activity
c) Deep reinforcement learning
IV) Case studies from research in computer vision, HCI, robotics and signal processing
LiteraturDeep Learning
Book by Ian Goodfellow and Yoshua Bengio
Voraussetzungen / Besonderes***
In accordance with the ETH Covid-19 master plan the lecture will be fully virtual. Details on the course website.
***

This is an advanced grad-level course that requires a background in machine learning. Students are expected to have a solid mathematical foundation, in particular in linear algebra, multivariate calculus, and probability. The course will focus on state-of-the-art research in deep-learning and will not repeat basics of machine learning

Please take note of the following conditions:
1) The number of participants is limited to 200 students (MSc and PhDs).
2) Students must have taken the exam in Machine Learning (252-0535-00) or have acquired equivalent knowledge
3) All practical exercises will require basic knowledge of Python and will use libraries such as Pytorch, scikit-learn and scikit-image. We will provide introductions to Pytorch and other libraries that are needed but will not provide introductions to basic programming or Python.

The following courses are strongly recommended as prerequisite:
* "Visual Computing" or "Computer Vision"

The course will be assessed by a final written examination in English. No course materials or electronic devices can be used during the examination. Note that the examination will be based on the contents of the lectures, the associated reading materials and the exercises.
264-5800-17LDoctoral Seminar in Visual Computing (FS21) Information 1 KP1SM. Gross, M. Pollefeys, O. Sorkine Hornung, S. Tang
KurzbeschreibungIn this doctoral seminar, current research at the Institute for Visual Computing will be presented and discussed. The goal is to learn about current research projects at our institute, to strengthen our expertise in the field, to provide a platform where research challenges caThis graduate seminar provides doctoral students in computer science a chance to read and discuss current research papers.
LernzielIn this doctoral seminar, current research at the Institute for Visual Computing will be presented and discussed. The goal is to learn about current research projects at our institute, to strengthen our expertise in the field, to provide a platform where research challenges can be discussed, and also to practice scientific presentations.
InhaltCurrent research at the IVC will be presented and discussed.
Voraussetzungen / BesonderesThis course requires solid knowledge in the area of Computer Graphics and Computer Vision as well as state-of-the-art research.