Mrinmaya Sachan: Catalogue data in Autumn Semester 2023

Name Prof. Dr. Mrinmaya Sachan
FieldMachine Learning and Natural Language Processing
Address
Masch.Lernen und Nat.Sprachverarb.
ETH Zürich, OAT Y 22.2
Andreasstrasse 5
8092 Zürich
SWITZERLAND
E-mailmrinmaya.sachan@inf.ethz.ch
DepartmentComputer Science
RelationshipAssistant Professor (Tenure Track)

NumberTitleECTSHoursLecturers
252-0945-17LDoctoral Seminar Machine Learning (HS23) Restricted registration - show details
Only for Computer Science Ph.D. students.

This doctoral seminar is intended for PhD students affiliated with the Institute for Machine Learning. Other PhD students who work on machine learning projects or related topics need approval by at least one of the organizers to register for the seminar.
2 credits1SN. He, V. Boeva, J. M. Buhmann, R. Cotterell, T. Hofmann, A. Krause, G. Rätsch, M. Sachan, J. Vogt, F. Yang
AbstractAn essential aspect of any research project is dissemination of the findings arising from the study. Here we focus on oral communication, which includes: appropriate selection of material, preparation of the visual aids (slides and/or posters), and presentation skills.
ObjectiveThe seminar participants should learn how to prepare and deliver scientific talks as well as to deal with technical questions. Participants are also expected to actively contribute to discussions during presentations by others, thus learning and practicing critical thinking skills.
Prerequisites / NoticeThis doctoral seminar of the Machine Learning Laboratory of ETH is intended for PhD students who work on a machine learning project, i.e., for the PhD students of the ML lab.
263-5005-00LArtificial Intelligence in Education Information
Does not take place this semester.
3 credits1V + 0.5UM. Sachan
AbstractArtificial Intelligence (AI) methods have shown to have a profound impact in educational technologies, where the great variety of tasks and data types enable us to get benefit of AI techniques in many different ways. We will review relevant methods and applications of AI in various educational technologies, and work on problem sets and projects to solve problems in education with the help of AI.
ObjectiveThe course will be centered around exploring methodological and system-focused perspectives on designing AI systems for education and analyzing educational data using AI methods. Students will be expected to a) engage in presentations and active in-class and asynchronous discussion, and b) work on problem-sets exemplifying the use of educational data mining techniques.
ContentThe course will start with an introduction to data mining techniques (e.g., prediction, structured discovery, visualization, and relationship mining) relevant to analyzing educational data. We will then continue with topics on personalization in AI in educational technologies (e.g., learner modeling and knowledge tracing, self-improving AIED systems) while showcasing exemplary applications in areas such as content curation and dialog-based tutoring. Finally, we will cover ethical challenges associated with using AI in student facing settings. Face-to-face meetings will be held every fortnight, although students will be expected to work individually on weekly tasks (e.g., discussing relevant literature, working on problems, preparing seminar presentations).
Lecture notesLecture slides will be made available at the course Web site.
LiteratureNo textbook is required, but there will be regularly assigned readings from research literature, linked to the course website.
Prerequisites / NoticeThere are no prerequisites for this class. However, it will help if the student has taken an undergraduate or graduate level class in statistics, data science or machine learning. This class is appropriate for advanced undergraduates and master students in Computer Science as well as PhD students in other departments.