Klaus Eyer: Catalogue data in Spring Semester 2020

Name Dr. Klaus Eyer
DepartmentChemistry and Applied Biosciences
RelationshipAssistant Professor

NumberTitleECTSHoursLecturers
529-0054-00LPhysical and Analytical Chemistry10 credits15PE. C. Meister, R. Zenobi, M. Badertscher, M.‑O. Ebert, K. Eyer, B. Hattendorf, Y. Yamakoshi
AbstractPractical introduction to important experimental methods in physical and analytical chemistry.
Learning objectiveThe students have to carry out selected experiments in physical chemistry and evaluate measurement data.
They acquire a good knowledge about the most important practical techniques in analytical chemistry.
Laboratory reports have to be written to each experiment.
ContentPhysical chemistry part:
Short recapitulation of statistics and analysis of measurement data. Writing experimental reports with regard to publication of scientific works. Basic physical chemistry experiments (a maximum of six experiments from the following themes): 1. Phase diagrams (liquid-vapour and solid-liquid phase diagrams, cryoscopy); 2. electrochemistry and electronics; 3. quantum chemistry studies; 4. kinetics; 5. thermochemistry; 6. speed of sound in gases and liquids; 7. surface tension.

Analytical chemistry part:
1. Introduction to the concept of sampling, quantitative elemental analysis and trace analysis, atomic spectroscopic methods, comparative measurements with electrochemical methods; 2. Separation methods, their principles and optimisation: comparison of the different chromatographic methods, effect of the stationary and mobile phases, common errors/artefacts, liquid chromatography, gas chromatography (injection methods). 3. Spectroscopic methods in organic structure determination: recording of IR and UV/VIS spectra, recording technique in NMR

Mandatory exercises in spectroscopy in an accompanying tutorial 529-0289-00 "Instrumentalanalyse organischer Verbindungen" are an integral part of this course.
Lecture notesDescriptions for experiments available online.
LiteratureFür PC-Teil: Erich Meister, Grundpraktikum Physikalische Cheme, 2. Aufl. Vdf UTB, Zürich 2012.
Prerequisites / NoticePrerequisites:
529-0051-00 "Analytische Chemie I (3. Semester)"
529-0058-00 "Analytische Chemie II (4. Semester)" in parallel to the lab class, or completed in an earlier semester. The course 529-0289-00L "Instumentalanalyse organischer Verbindungen" is an obligatory component of the lab class / praktikum.
529-0289-00LSpectra Interpretation of Organic Compounds2 credits2GR. Zenobi, M. Badertscher, K. Eyer, Y. Yamakoshi
AbstractExercises in interpretation of molecular spectra
Learning objectiveMastering the interpretation of molecular spectra.
ContentIn the first part of the lecture, the students work in small groups on solving particular problems in structure elucidation, interpreting mass, 1H-NMR, 13C-NMR, IR, and UV/VIS spectra, optionally in discussion with the lecturers. In the second part the problems are solved by a lecturer.
Lecture notesSpectroscopic problems will be distributed
LiteratureE. Pretsch, P. Bühlmann, M. Badertscher, Structure Determination of Organic Compounds: Tables of Spectral Data, Springer-Verlag, Berlin, 2009, 4th revised and enlarged Engl. ed.

E. Pretsch, G. Tóth, M. E. Munk, M. Badertscher, Computer-Aided Structure Elucidation: Spectra Interpretation and Structure Generation, Wiley-VCH, Weinheim, 2002.
Prerequisites / NoticeThe course is based on the lectures Analytical Chemistry I (529-0051-00) and Analytical Chemistry II (529-0058-00).
Solutions to the problems will be posted on the internet.