Klaus Eyer: Catalogue data in Spring Semester 2020 |
Name | Dr. Klaus Eyer |
Department | Chemistry and Applied Biosciences |
Relationship | Assistant Professor |
Number | Title | ECTS | Hours | Lecturers | |
---|---|---|---|---|---|
529-0054-00L | Physical and Analytical Chemistry | 10 credits | 15P | E. C. Meister, R. Zenobi, M. Badertscher, M.‑O. Ebert, K. Eyer, B. Hattendorf, Y. Yamakoshi | |
Abstract | Practical introduction to important experimental methods in physical and analytical chemistry. | ||||
Learning objective | The students have to carry out selected experiments in physical chemistry and evaluate measurement data. They acquire a good knowledge about the most important practical techniques in analytical chemistry. Laboratory reports have to be written to each experiment. | ||||
Content | Physical chemistry part: Short recapitulation of statistics and analysis of measurement data. Writing experimental reports with regard to publication of scientific works. Basic physical chemistry experiments (a maximum of six experiments from the following themes): 1. Phase diagrams (liquid-vapour and solid-liquid phase diagrams, cryoscopy); 2. electrochemistry and electronics; 3. quantum chemistry studies; 4. kinetics; 5. thermochemistry; 6. speed of sound in gases and liquids; 7. surface tension. Analytical chemistry part: 1. Introduction to the concept of sampling, quantitative elemental analysis and trace analysis, atomic spectroscopic methods, comparative measurements with electrochemical methods; 2. Separation methods, their principles and optimisation: comparison of the different chromatographic methods, effect of the stationary and mobile phases, common errors/artefacts, liquid chromatography, gas chromatography (injection methods). 3. Spectroscopic methods in organic structure determination: recording of IR and UV/VIS spectra, recording technique in NMR Mandatory exercises in spectroscopy in an accompanying tutorial 529-0289-00 "Instrumentalanalyse organischer Verbindungen" are an integral part of this course. | ||||
Lecture notes | Descriptions for experiments available online. | ||||
Literature | Für PC-Teil: Erich Meister, Grundpraktikum Physikalische Cheme, 2. Aufl. Vdf UTB, Zürich 2012. | ||||
Prerequisites / Notice | Prerequisites: 529-0051-00 "Analytische Chemie I (3. Semester)" 529-0058-00 "Analytische Chemie II (4. Semester)" in parallel to the lab class, or completed in an earlier semester. The course 529-0289-00L "Instumentalanalyse organischer Verbindungen" is an obligatory component of the lab class / praktikum. | ||||
529-0289-00L | Spectra Interpretation of Organic Compounds | 2 credits | 2G | R. Zenobi, M. Badertscher, K. Eyer, Y. Yamakoshi | |
Abstract | Exercises in interpretation of molecular spectra | ||||
Learning objective | Mastering the interpretation of molecular spectra. | ||||
Content | In the first part of the lecture, the students work in small groups on solving particular problems in structure elucidation, interpreting mass, 1H-NMR, 13C-NMR, IR, and UV/VIS spectra, optionally in discussion with the lecturers. In the second part the problems are solved by a lecturer. | ||||
Lecture notes | Spectroscopic problems will be distributed | ||||
Literature | E. Pretsch, P. Bühlmann, M. Badertscher, Structure Determination of Organic Compounds: Tables of Spectral Data, Springer-Verlag, Berlin, 2009, 4th revised and enlarged Engl. ed. E. Pretsch, G. Tóth, M. E. Munk, M. Badertscher, Computer-Aided Structure Elucidation: Spectra Interpretation and Structure Generation, Wiley-VCH, Weinheim, 2002. | ||||
Prerequisites / Notice | The course is based on the lectures Analytical Chemistry I (529-0051-00) and Analytical Chemistry II (529-0058-00). Solutions to the problems will be posted on the internet. |