Peng Zeng: Catalogue data in Spring Semester 2022

Name Dr. Peng Zeng
Address
ScopeM
ETH Zürich, HPM D 48
Otto-Stern-Weg 3
8093 Zürich
SWITZERLAND
Telephone+41 44 633 80 34
E-mailpeng.zeng@scopem.ethz.ch
DepartmentMaterials
RelationshipLecturer

NumberTitleECTSHoursLecturers
327-2125-00LMicroscopy Training SEM I - Introduction to SEM Restricted registration - show details
Limited number of participants.

Master students will have priority over PhD students. PhD students may still enroll, but will be asked for a fee. (http://www.scopem.ethz.ch/education/MTP.html).

Registration form: (Link)
2 credits3PP. Zeng, A. G. Bittermann, S. Gerstl, L. Grafulha Morales, K. Kunze, J. Reuteler
AbstractThe introductory course on Scanning Electron Microscopy (SEM) emphasizes hands-on learning. Using 2 SEM instruments, students have the opportunity to study their own samples, or standard test samples, as well as solving exercises provided by ScopeM scientists.
Learning objective- Set-up, align and operate a SEM successfully and safely.
- Accomplish imaging tasks successfully and optimize microscope performances.
- Master the operation of a low-vacuum and field-emission SEM and EDX instrument.
- Perform sample preparation with corresponding techniques and equipment for imaging and analysis
- Acquire techniques in obtaining secondary electron and backscatter electron micrographs
- Perform EDX qualitative and semi-quantitative analysis
ContentDuring the course, students learn through lectures, demonstrations, and hands-on sessions how to setup and operate SEM instruments, including low-vacuum and low-voltage applications.
This course gives basic skills for students new to SEM. At the end of the course, students with no prior experience are able to align a SEM, to obtain secondary electron (SE) and backscatter electron (BSE) micrographs and to perform energy dispersive X-ray spectroscopy (EDX) qualitative and semi-quantitative analysis. The procedures to better utilize SEM to solve practical problems and to optimize SEM analysis for a wide range of materials will be emphasized.

- Discussion of students' sample/interest
- Introduction and discussion on Electron Microscopy and instrumentation
- Lectures on electron sources, electron lenses and probe formation
- Lectures on beam/specimen interaction, image formation, image contrast and imaging modes.
- Lectures on sample preparation techniques for EM
- Brief description and demonstration of the SEM microscope
- Practice on beam/specimen interaction, image formation, image contrast (and image processing)
- Student participation on sample preparation techniques
- Scanning Electron Microscopy lab exercises: setup and operate the instrument under various imaging modalities
- Lecture and demonstrations on X-ray micro-analysis (theory and detection), qualitative and semi-quantitative EDX and point analysis, linescans and spectral mapping
- Practice on real-world samples and report results
Literature- Detailed course manual
- Williams, Carter: Transmission Electron Microscopy, Plenum Press, 1996
- Hawkes, Valdre: Biophysical Electron Microscopy, Academic Press, 1990
- Egerton: Physical Principles of Electron Microscopy: an introduction to TEM, SEM and AEM, Springer Verlag, 2007
Prerequisites / NoticeNo mandatory prerequisites. Please consider the prior attendance to EM Basic lectures (551- 1618-00V; 227-0390-00L; 327-0703-00L) as suggested prerequisite.
327-2126-00LMicroscopy Training TEM I - Introduction to TEM Restricted registration - show details
Number of participants limited to 6.
Master students will have priority over PhD students. PhD students may still enroll, but will be asked for a fee (http://www.scopem.ethz.ch/education/MTP.html).

TEM 1 registration form: (Link)
2 credits3PP. Zeng, E. J. Barthazy Meier, A. G. Bittermann, F. Gramm, A. Sologubenko, M. Willinger
AbstractThe introductory course on Transmission Electron Microscopy (TEM) provides theoretical and hands-on learning for new operators, utilizing lectures, demonstrations, and hands-on sessions.
Learning objective- Overview of TEM theory, instrumentation, operation and applications.
- Alignment and operation of a TEM, as well as acquisition and interpretation of images, diffraction patterns, accomplishing basic tasks successfully.
- Knowledge of electron imaging modes (including Scanning Transmission Electron Microscopy), magnification calibration, and image acquisition using CCD cameras.
- To set up the TEM to acquire diffraction patterns, perform camera length calibration, as well as measure and interpret diffraction patterns.
- Overview of techniques for specimen preparation.
ContentUsing two Transmission Electron Microscopes the students learn how to align a TEM, select parameters for acquisition of images in bright field (BF) and dark field (DF), perform scanning transmission electron microscopy (STEM) imaging, phase contrast imaging, and acquire electron diffraction patterns. The participants will also learn basic and advanced use of digital cameras and digital imaging methods.

- Introduction and discussion on Electron Microscopy and instrumentation.
- Lectures on electron sources, electron lenses and probe formation.
- Lectures on beam/specimen interaction, image formation, image contrast and imaging modes.
- Lectures on sample preparation techniques for EM.
- Brief description and demonstration of the TEM microscope.
- Practice on beam/specimen interaction, image formation, Image contrast (and image processing).
- Demonstration of Transmission Electron Microscopes and imaging modes (Phase contrast, BF, DF, STEM).
- Student participation on sample preparation techniques.
- Transmission Electron Microscopy lab exercises: setup and operate the instrument under various imaging modalities.
- TEM alignment, calibration, correction to improve image contrast and quality.
- Electron diffraction.
- Practice on real-world samples and report results.
Literature- Detailed course manual
- Williams, Carter: Transmission Electron Microscopy, Plenum Press, 1996
- Hawkes, Valdre: Biophysical Electron Microscopy, Academic Press, 1990
- Egerton: Physical Principles of Electron Microscopy: an introduction to TEM, SEM and AEM, Springer Verlag, 2007
Prerequisites / NoticeNo mandatory prerequisites. Please consider the prior attendance to EM Basic lectures (551- 1618-00V; 227-0390-00L; 327-0703-00L) as suggested prerequisite.
327-2129-00LAnalytical Electron Microscopy: EDS Restricted registration - show details
Limited number of participants.

Registration form: (Link)
1 credit2PP. Zeng, L. Grafulha Morales, K. Kunze, A. Sologubenko
AbstractThe main goal of this hands-on course is to provide students with fundamental understanding of underlying physical processes, experimental set-up solutions and hands-on practical experience of analytical electron microscopy (AEM) technique for microstructure characterisation, specifically Energy Dispersive X-ray Spectroscopy (EDS) and spectrum imaging (SI) technique.
Learning objective- understanding of physical processes that enable the EDS technique and data evaluation algorithms;
- hand-on experience of data acquisition and evaluation routines including
o practical understanding of different data acquisition set-ups,
o optimization of acquisition parameters for most reliable quantification of the results,
o the knowledge of the available and most reliable quantification algorithms and their handling
o the knowledge of data evaluation routines and possible handicaps for reliable elemental content distribution analyses and material composition quantification
o the effect of the specimen geometry on the data and experimental solutions for minimization of the artefacts
ContentThis advanced course provides analytical EM techniques to the students with prior EM experience (TEM or SEM). At the end of the course, students will understand the physical processes that enable the EDS technique and data evaluation algorithms and apply the technique for their own research.
- Introduction to analytical electron microscopy: theory and instrumentation.
- Lectures on EDS, WDS
- Practical on EDS-SEM: data acquisition and analysis.
- Practical on EDS-TEM: data acquisition and analysis.
The hand-on trainings are to be carried-out on a real-life specimen, provided by lecturers and / by students.
Lecture notesProvided in the course Moodle-page
Literature- Egerton: Physical Principles of Electron Microscopy: an introduction to TEM, SEM and AEM. Springer Verlag, 2007
- Williams & Carter: Transmission Electron Microscopy: A Textbook for Material Sciences. Plenum Press, 2nd Edition 2009, ISBD: 0 306 45247-2
- Goodhew, Humphreys & Beanland: Electron Microscopy and Analyses, Third edition. CRC Press, 2000
- Carter & Williams: Transmission Electron Microscopy: Diffraction, Imaging and Spectrometry. Springer Verlag, 2016, DOI: 10.1007/978-3-319-26651-0
- Reed: Electron Microprobe Analysis and Scanning Electron Microscopy in Geology. Cambridge University Press, 2010
Prerequisites / Notice- Master student or PhD student who has experience with EM (SEM or TEM) techniques or prior attendance of one of the following courses: Microscopy Training SEM1 (327-2125-00L) or Microscopy Training TEM1(327-2126-00L)
- Attendance of the following courses is of advantage, but not required: Scattering Techniques for Material Characterization (327-2137-00L) or Elements of Microscopy (227-0390-00L) or Electron Microscopy in Material Science (327-0703-00L)
327-2140-00LFocused Ion Beam and Applications Restricted registration - show details
Number of participants limited to 6. PhD students will be asked for a fee. https://scopem.ethz.ch/education/MTP.html

Registration form: (Link)
1 credit2PP. Zeng, A. G. Bittermann, S. Gerstl, L. Grafulha Morales, J. Reuteler
AbstractThe introductory course on Focused Ion Beam (FIB) provides theoretical and hands-on learning for new operators, utilizing lectures, demonstrations and hands-on sessions.
Learning objective- Set-up, align and operate a FIB-SEM successfully and safely.
- Accomplish operation tasks and optimize microscope performances.
- Perform sample preparation (TEM lamella, APT probe…) using FIB-SEM.
- Perform other FIB techniques, such as characterization
- At the end of the course, students will know how to set-up FIB-SEM, how to prepare TEM lamella/APT probe and how to utilize FIB techniques.
ContentThis course provides FIB techniques to students with previous SEM experience.
- Overview of FIB theory, instrumentation, operation and applications.
- Introduction and discussion on FIB and instrumentation.
- Lectures on FIB theory.
- Lectures on FIB applications.
- Practicals on FIB-SEM set-up, cross-beam alignment.
- Practicals on site-specific cross-section and TEM lamellar preparation.
- Lecture and demonstration on FIB automation.
Literature- Detailed course manual.
- Giannuzzi, Stevie: Introduction to focused ion beams instrumentation, theory, techniques, and practice, Springer, 2005.
- Orloff, Utlaut, Swanson: High resolution focused ion beams: FIB and its applications, Kluwer Academic/Plenum Publishers, 2003.
Prerequisites / NoticeThe students should fulfil one or more of these prerequisites:
- Prior attendance to the ScopeM Microscopy Training SEM I: Introduction to SEM (327-2125-00L).
- Prior SEM experience.
327-2144-00LMicroscopy Training Cryogenic Electron Microscopy Restricted registration - show details 1 credit2PM. Peterek, B. Qureshi, E. J. Barthazy Meier, S. Handschin, M. S. Lucas-Droste, P. Zeng
AbstractThe introductory course on cryogenic electron microscopy (cryoEM) provides theoretical and hands-on learning for new operators, utilizing lectures, demonstrations and hands-on sessions.
Learning objective- Overview of cryoEM theory, instrumentation, operation and applications
- Prepare cryoEM sample (vitrification using Vitrobot)
- Set-up, align and operate a cryoTEM successfully and safely
- Set up automated data collection
- Basic processing steps to analyze/interpret the data e.g., reconstruction 3D volumes
ContentThis course introduces and gives an overview of cryoEM and its applications. At the end of the course, students will be familiar with how to prepare vitrified probe and how to use a cryoTEM to collect and analyze data for exemplary techniques:
- Introduction and discussion on cryoEM and instrumentation
- Lectures on cryoEM theory
- Lectures on cryoEM applications
- Practicals/demonstration on vitrification, grid preparation
- Practicals/demonstration on data collection
- Lecture and practicals/demonstration on reconstruction of 3D volumes from 2D cryoEM projections/images
Literature- Course slides
- EM-University: (https://em-learning.com/)
- Book: CryoEM Methods and Protocols edited by T Gonen, B B Nannenga
- Book: Single-particle Cryo-eM of Biological Macromolecules edited by R M Glaeser, E Nogales, W Chiu
Prerequisites / NoticeThe students should fulfil one or more of these prerequisites:
- Prior attendance to the ScopeM Microscopy Training TEM I
- Prior TEM experience