Valentina Boeva: Katalogdaten im Herbstsemester 2022 |
Name | Frau Prof. Dr. Valentina Boeva |
Lehrgebiet | Biomedizininformatik |
Adresse | Professur für Biomedizininformatik ETH Zürich, CAB G 32.2 Universitätstrasse 6 8092 Zürich SWITZERLAND |
Telefon | +41 44 633 66 87 |
valentina.boeva@inf.ethz.ch | |
Departement | Informatik |
Beziehung | Assistenzprofessorin (Tenure Track) |
Nummer | Titel | ECTS | Umfang | Dozierende | |||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
252-4811-00L | Machine Learning Seminar Number of participants limited to 24. The deadline for deregistering expires at the end of the second week of the semester. Students who are still registered after that date, but do not attend the seminar, will officially fail the seminar. | 2 KP | 2S | V. Boeva, T. Hofmann, E. Krymova | |||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | Seminal and recent papers in machine learning are presented and discussed. | ||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | The seminar familiarizes students with advanced and recent ideas in machine learning. Original articles have to be presented, contexctualized, and critically reviewed. The students will learn how to structure a scientific presentation in English which covers the key ideas of a scientific paper. | ||||||||||||||||||||||||||||||||||||||||||||||||||
Inhalt | The seminar will cover a number of recent papers which have emerged as important contributions in the machine learning research community. The topics will vary from year to year but they are centered on methodological issues in machine learning like new learning algorithms, ensemble methods or new statistical models for machine learning applications. | ||||||||||||||||||||||||||||||||||||||||||||||||||
Literatur | The papers will be presented and allocated in the first session of the seminar. | ||||||||||||||||||||||||||||||||||||||||||||||||||
Voraussetzungen / Besonderes | Basic knowledge of machine learning as taught in undergraduate courses such as "252-0220-00 Introduction to Machine Learning" are required. | ||||||||||||||||||||||||||||||||||||||||||||||||||
263-3300-00L | Data Science Lab Only for Data Science MSc. | 14 KP | 9P | C. Zhang, V. Boeva, R. Cotterell, A. Ilic, J. Vogt, F. Yang | |||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | In this class, we bring together data science applications provided by ETH researchers outside computer science and teams of computer science master's students. Two to three students will form a team working on data science/machine learning-related research topics provided by scientists in a diverse range of domains such as astronomy, biology, social sciences etc. | ||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | The goal of this class if for students to gain experience of dealing with data science and machine learning applications "in the wild". Students are expected to go through the full process starting from data cleaning, modeling, execution, debugging, error analysis, and quality/performance refinement. | ||||||||||||||||||||||||||||||||||||||||||||||||||
Voraussetzungen / Besonderes | Prerequisites: At least 8 KP must have been obtained under Data Analysis and at least 8 KP must have been obtained under Data Management and Processing. | ||||||||||||||||||||||||||||||||||||||||||||||||||
551-1299-00L | Bioinformatics | 6 KP | 4G | S. Sunagawa, P. Beltrao, A. Blasimme, V. Boeva, A. Kahles, C. von Mering, N. Zamboni | |||||||||||||||||||||||||||||||||||||||||||||||
Kurzbeschreibung | Students will study bioinformatic concepts in the areas of genomics, metagenomics, proteomics, biological networks, biostatistics and bioethics. Through integrated lectures, practical hands-on sessions and homework assignments, students will also be trained in analytical and programming skills to meet the emerging increase in data-driven knowledge generation in biology in the 21st century. | ||||||||||||||||||||||||||||||||||||||||||||||||||
Lernziel | Students will have an advanced understanding of the underlying concepts behind modern bioinformatic analyses at genome, metagenome and proteome-wide scales. They will be familiar with the most common data types, where to access them, and how to analytically work with them to address contemporary questions in the field of biology. | ||||||||||||||||||||||||||||||||||||||||||||||||||
Voraussetzungen / Besonderes | Course participants have already acquired basic programming skills in UNIX, Python and R. Students bring their own computer with keyboard, internet access (browser) and software to connect to the ETH network via VPN. | ||||||||||||||||||||||||||||||||||||||||||||||||||
Kompetenzen |
|