Sergio Miguel Martin: Katalogdaten im Frühjahrssemester 2021

NameHerr Dr. Sergio Miguel Martin
Adresse
Professur f. Computational Science
ETH Zürich, CLT E 13
Clausiusstrasse 33
8092 Zürich
SWITZERLAND
E-Mailmartiser@ethz.ch
DepartementMaschinenbau und Verfahrenstechnik
BeziehungDozent

NummerTitelECTSUmfangDozierende
151-0116-00LHigh Performance Computing for Science and Engineering (HPCSE) for CSE Information 7 KP4G + 2PP. Koumoutsakos, S. M. Martin
KurzbeschreibungThis course focuses on programming methods and tools for parallel computing on multi and many-core architectures. Emphasis will be placed on practical and computational aspects of Bayesian Uncertainty Quantification and Machine Learning including the implementation of these algorithms on HPC architectures.
LernzielThe course will teach
- programming models and tools for multi and many-core architectures
- fundamental concepts of Uncertainty Quantification and Propagation (UQ+P) for computational models of systems in Engineering and Life Sciences.
- fundamentals of Deep Learning
InhaltHigh Performance Computing:
- Advanced topics in shared-memory programming
- Advanced topics in MPI
- GPU architectures and CUDA programming

Uncertainty Quantification:
- Uncertainty quantification under parametric and non-parametric modeling uncertainty
- Bayesian inference with model class assessment
- Markov Chain Monte Carlo simulation

Machine Learning
- Deep Neural Networks and Stochastic Gradient Descent
- Deep Neural Networks for Data Compression (Autoencoders)
- Recurrent Neural Networks
Skripthttps://www.cse-lab.ethz.ch/teaching/hpcse-ii_fs21/
Class notes, handouts
Literatur- Class notes
- Introduction to High Performance Computing for Scientists and Engineers, G. Hager and G. Wellein
- CUDA by example, J. Sanders and E. Kandrot
- Data Analysis: A Bayesian Tutorial, D. Sivia and J. Skilling
- An introduction to Bayesian Analysis - Theory and Methods, J. Gosh, N. Delampady and S. Tapas
- Bayesian Data Analysis, A. Gelman, J. Carlin, H. Stern, D. Dunson, A. Vehtari and D. Rubin
- Machine Learning: A Bayesian and Optimization Perspective, S. Theodorides
Voraussetzungen / BesonderesAttendance of HPCSE I
151-0116-10LHigh Performance Computing for Science and Engineering (HPCSE) for Engineers II Information 4 KP4GP. Koumoutsakos, S. M. Martin
KurzbeschreibungThis course focuses on programming methods and tools for parallel computing on multi and many-core architectures. Emphasis will be placed on practical and computational aspects of Uncertainty Quantification and Propagation including the implementation of relevant algorithms on HPC architectures.
LernzielThe course will teach
- programming models and tools for multi and many-core architectures
- fundamental concepts of Uncertainty Quantification and Propagation (UQ+P) for computational models of systems in Engineering and Life Sciences
InhaltHigh Performance Computing:
- Advanced topics in shared-memory programming
- Advanced topics in MPI
- GPU architectures and CUDA programming

Uncertainty Quantification:
- Uncertainty quantification under parametric and non-parametric modeling uncertainty
- Bayesian inference with model class assessment
- Markov Chain Monte Carlo simulation
Skripthttps://www.cse-lab.ethz.ch/teaching/hpcse-ii_fs21/
Class notes, handouts
Literatur- Class notes
- Introduction to High Performance Computing for Scientists and Engineers, G. Hager and G. Wellein
- CUDA by example, J. Sanders and E. Kandrot
- Data Analysis: A Bayesian Tutorial, D. Sivia and J. Skilling
- An introduction to Bayesian Analysis - Theory and Methods, J. Gosh, N. Delampady and S. Tapas
- Bayesian Data Analysis, A. Gelman, J. Carlin, H. Stern, D. Dunson, A. Vehtari and D. Rubin
- Machine Learning: A Bayesian and Optimization Perspective, S. Theodorides
Voraussetzungen / BesonderesStudents must be familiar with the content of High Performance Computing for Science and Engineering I (151-0107-20L)