Larissa de Palézieux dit Falconnet: Catalogue data in Autumn Semester 2021

Name Dr. Larissa de Palézieux dit Falconnet
Name variantsLarissa de Palézieux
Larissa De Palézieux
Address
Professur für Ingenieurgeologie
ETH Zürich, NO G 1.2
Sonneggstrasse 5
8092 Zürich
SWITZERLAND
Telephone+41 44 633 22 86
E-maillarissa.depalezieux@eaps.ethz.ch
DepartmentEarth and Planetary Sciences
RelationshipLecturer

NumberTitleECTSHoursLecturers
651-3525-AALIntroduction to Engineering Geology
Enrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement.

Any other students (e.g. incoming exchange students, doctoral students) CANNOT enrol for this course unit.
3 credits6RS. Löw, L. de Palézieux dit Falconnet
AbstractThis introductory course starts from a descriptions of the behavior and phenomena of soils and rocks under near surface loading conditions and their key geotechnical properties. Lab and field methods for the characterization of soils, rocks and rock masses are introduced. Finally practical aspects of ground engineering, including tunneling and landslide hazards are presented.
Learning objectiveUnderstanding the basic geotechnical and geomechanical properties and processes of rocks and soils. Understanding the interaction of rock and soil masses with technical systems. Understanding the fundamentals of geological hazards.
ContentRock, soil and rock mass: scale effects and fundamental geotechnical properties. Soil mechanical properties and their determination. Rock mechanical properties and their determination. Fractures: geotechnical properties and their determination. Geotechnical classification of intact rock, soils and rock masses. Natural and induced stresses in rock and soil. Interaction of soil masses with surface loads, water and excavations. Slope instability mechanisms and stability analyses. Underground excavation instability mechanisms and rock deformation. Geological mass wasting processes.
Lecture notesLecture Material as defined in German PPT Slides of the German Course “651-3525-00L Ingenieurgeologie”.
Moodle Course Materials available.
LiteratureFor English speakers study chapters 1-3 of Part I of the book “Geological Engineering” (Gonzalez de Vallejo & Ferrer 2011, CRC Press), without groundwater flow, consolidation time, geophysical methods, details of triaxial tests in soils and rocks, details of clay mineralogy.
Prerequisites / NoticeParticipate on all exercises of “651-3525-00L Ingenieurgeologie”, Tuesday 13-14 pm.
Participate in Written Exam together with students of the German Course
651-3525-00LIntroduction to Engineering Geology4 credits2V + 1US. Löw, L. de Palézieux dit Falconnet, M. Ziegler
AbstractThis introductory course starts from a descriptions of the behavior and phenomena of soils and rocks under near surface loading conditions and their key geotechnical properties. Lab and field methods for the characterization of soils, rocks and rock masses are introduced. Finally practical aspects of ground engineering, including tunneling and landslide hazards are presented.
Learning objectiveUnderstanding the basic geotechnical and geomechanical properties and processes of rocks and soils. Understanding the interaction of rock and soil masses with technical systems. Understanding the fundamentals of geological hazards.
ContentRock, soil and rock mass: scale effects and fundamental geotechnical properties. Soil mechanical properties and their determination. Rock mechanical properties and their determination. Fractures: geotechnical properties and their determination. Geotechnical classification of intact rock, soils and rock masses. Natural and induced stresses in rock and soil. Interaction of soil masses with surface loads, water and excavations. Slope instability mechanisms and stability analyses. Underground excavation instability mechanisms and rock deformation. Geological mass wasting processes.
Lecture notesWritten course documentation available under "Kursunterlagen".
LiteraturePRINZ, H. & R. Strauss (2006): Abriss der Ingenieurgeologie. - 671 S., 4. Aufl., Elsevier GmbH (Spektrum Verlag).

CADUTO, D.C. (1999): Geotechnical Engineering, Principles and Practices. 759 S., 1. Aufl., (Prentice Hall)

LANG, H.-J., HUDER, J. & AMMAN, P. (1996): Bodenmechanik und Grundbau. Das Verhalten von Böden und die wichtigsten grundbaulichen Konzepte. - 320 S., 5.Aufl., Berlin, Heidelberg etc. (Springer).

HOEK, E. (2007): Practical Rock Engineering - Course Notes. http://www.rocscience.com/hoek/PracticalRockEngineering.asp

HUDSON, J.A. & HARRISON, J.P. (1997): Engineering Rock Mechanics. An Introduction to the Principles. - 444 S. (Pergamon).
651-4125-00LRock and Soil Mechanical Lab Practical Information Restricted registration - show details 3 credits2PL. de Palézieux dit Falconnet, O. Moradian
AbstractIn this course, students will gain hands on experience performing laboratory and index tests commonly used in Rock and Soil Mechanics. The course is divided into two modules, with half the semester devoted to rock mechanic testing, and half to soil mechanics testing.
Learning objectiveThis course introduces the fundamentals of laboratory testing of rock and soil. Students will learn how to interpret laboratory data, the expected accuracy and limitations of common laboratory tests and the most appropriate testing method(s) for a given problem.
ContentIn the Rock Mechanics lab, the following laboratory tests are performed: Ultrasonic velocity measurements, Point load test, Brazilian tensile test, Uniaxial compression test, Triaxial compression test. Through performing these experiments, students will get familiar with stress-strain curves, tensile, unconfined, and confined strength of rocks, Young’s modulus and Poisson ratio, and finally cohesion and friction angle of intact rocks.

In the Soil Mechanics Lab, the following seven laboratory tests are performed: Sieve Analysis, Hydrometer Analysis, Atterberg Limits, Proctor Compaction, Direct Shear Test, Falling Head Permeability and Consolidation Test. Through performing these tests, students gain an understanding of the relationship between index properties and soil behavior, as well as the strength, deformability and hydraulic characteristics of soils.
Lecture notesCourse materials are available in:
https://www.ethz.ch/content/specialinterest/erdw/geological-institute/engineering-geology/en/teaching/msc/fall/rock-and-soil-mechanical-lab-practical.html