Marc Willinger: Catalogue data in Autumn Semester 2019 |
Name | Dr. Marc Willinger |
Department | Materials |
Relationship | Lecturer |
Number | Title | ECTS | Hours | Lecturers | |
---|---|---|---|---|---|
327-0703-00L | Electron Microscopy in Material Science | 4 credits | 2V + 2U | K. Kunze, R. Erni, S. Gerstl, F. Gramm, A. Käch, F. Krumeich, M. Willinger | |
Abstract | A comprehensive understanding of the interaction of electrons with condensed matter and details on the instrumentation and methods designed to use these probes in the structural and chemical analysis of various materials. | ||||
Learning objective | A comprehensive understanding of the interaction of electrons with condensed matter and details on the instrumentation and methods designed to use these probes in the structural and chemical analysis of various materials. | ||||
Content | This course provides a general introduction into electron microscopy of organic and inorganic materials. In the first part, the basics of transmission- and scanning electron microscopy are presented. The second part includes the most important aspects of specimen preparation, imaging and image processing. In the third part, recent applications in materials science, solid state physics, structural biology, structural geology and structural chemistry will be reported. | ||||
Lecture notes | will be distributed in English | ||||
Literature | Goodhew, Humphreys, Beanland: Electron Microscopy and Analysis, 3rd. Ed., CRC Press, 2000 Thomas, Gemming: Analytical Transmission Electron Microscopy - An Introduction for Operators, Springer, Berlin, 2014 Thomas, Gemming: Analytische Transmissionselektronenmikroskopie: Eine Einführung für den Praktiker, Springer, Berlin, 2013 Williams, Carter: Transmission Electron Microscopy, Plenum Press, 1996 Reimer, Kohl: Transmission Electron Microscopy, 5th Ed., Berlin, 2008 Erni: Aberration-corrected imaging in transmission electron microscopy, Imperial College Press (2010, and 2nd ed. 2015) | ||||
327-2126-00L | Microscopy Training TEM I - Introduction to TEM The number of participants is limited. In case of overbooking, the course will be repeated once. All registrations will be recorded on the waiting list. For PhD students, postdocs and others, a fee will be charged (http://www.scopem.ethz.ch/education/MTP.html). All applicants must additionally register on this form: Link The selected applicants will be contacted and asked for confirmation a few weeks before the course date. | 2 credits | 3P | P. Zeng, E. J. Barthazy Meier, A. G. Bittermann, F. Gramm, M. Willinger | |
Abstract | The introductory course on Transmission Electron Microscopy (TEM) provides theoretical and hands-on learning for new operators, utilizing lectures, demonstrations, and hands-on sessions. | ||||
Learning objective | - Overview of TEM theory, instrumentation, operation and applications. - Alignment and operation of a TEM, as well as acquisition and interpretation of images, diffraction patterns, accomplishing basic tasks successfully. - Knowledge of electron imaging modes (including Scanning Transmission Electron Microscopy), magnification calibration, and image acquisition using CCD cameras. - To set up the TEM to acquire diffraction patterns, perform camera length calibration, as well as measure and interpret diffraction patterns. - Overview of techniques for specimen preparation. | ||||
Content | Using two Transmission Electron Microscopes the students learn how to align a TEM, select parameters for acquisition of images in bright field (BF) and dark field (DF), perform scanning transmission electron microscopy (STEM) imaging, phase contrast imaging, and acquire electron diffraction patterns. The participants will also learn basic and advanced use of digital cameras and digital imaging methods. - Introduction and discussion on Electron Microscopy and instrumentation. - Lectures on electron sources, electron lenses and probe formation. - Lectures on beam/specimen interaction, image formation, image contrast and imaging modes. - Lectures on sample preparation techniques for EM. - Brief description and demonstration of the TEM microscope. - Practice on beam/specimen interaction, image formation, Image contrast (and image processing). - Demonstration of Transmission Electron Microscopes and imaging modes (Phase contrast, BF, DF, STEM). - Student participation on sample preparation techniques. - Transmission Electron Microscopy lab exercises: setup and operate the instrument under various imaging modalities. - TEM alignment, calibration, correction to improve image contrast and quality. - Electron diffraction. - Practice on real-world samples and report results. | ||||
Literature | - Detailed course manual - Williams, Carter: Transmission Electron Microscopy, Plenum Press, 1996 - Hawkes, Valdre: Biophysical Electron Microscopy, Academic Press, 1990 - Egerton: Physical Principles of Electron Microscopy: an introduction to TEM, SEM and AEM, Springer Verlag, 2007 | ||||
Prerequisites / Notice | No mandatory prerequisites. Please consider the prior attendance to EM Basic lectures (551- 1618-00V; 227-0390-00L; 327-0703-00L) as suggested prerequisite. |