Whitney Behr: Catalogue data in Autumn Semester 2023

Name Prof. Dr. Whitney Behr
FieldStructural Geology and Tectonics
Address
Professur Strukturgeol u.Tektonik
ETH Zürich, NO E 67
Sonneggstrasse 5
8092 Zürich
SWITZERLAND
Telephone+41 44 632 04 65
E-mailwhitney.behr@eaps.ethz.ch
DepartmentEarth and Planetary Sciences
RelationshipFull Professor

NumberTitleECTSHoursLecturers
651-1180-00LResearch Seminar Structural Geology and Tectonics Information 0 credits1SW. Behr
AbstractA seminar series with invited speakers from both inside and outside the ETH.
Learning objectiveThe seminar series provides an opportunity to convey the latest research results to students and staff.
ContentInformal seminars with both internal and external speakers on current topics in Structural Geology, Tectonics and Rock Physics. The current program is available at: http://www.structuralgeology.ethz.ch/news-and-events/events-and-seminars.html
651-3070-AALFundamentals of Geology
Enrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement.

Any other students (e.g. incoming exchange students, doctoral students) CANNOT enrol for this course unit.
6 credits13RV. Picotti, W. Behr
Abstract
Learning objective
651-3521-AALTectonics
Enrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement.

Any other students (e.g. incoming exchange students, doctoral students) CANNOT enrol for this course unit.
3 credits6RT. Gerya, W. Behr
AbstractComprehensive understanding of role and evolution of oceanic and continental lithosphere in global plate tectonics and evolution of earth. Understanding principles of theoretical and experimental geothermics and fundamentals of mantle and lithosphere rheologies.
Learning objectiveComprehensive understanding of role and evolution of oceanic and continental lithosphere in global plate tectonics and evolution of earth. Understanding principles of theoretical and experimental geothermics and fundamentals of mantle and lithosphere rheologies.
ContentConcept of lithosphere-asthenosphere system in plate tectonics. Physics, chemistry, and rheology of crust and uppermost mantle. Thermal, chemical, and mechanical evolution and destruction/subduction of oceanic lithosphere and evolution of continents. Continental growth, example Europe. Fundamentals of rheology and geothermics of the mantle-lithosphere-crust system.
Lecture notesDetailed scriptum in digital form and additional learning moduls (www.lead.ethz.ch) available on intranet.
Literaturesee list in scriptum.
Prerequisites / NoticePPT-files of each lecture may be played back for rehearsal on www.lead.ethz.ch.
651-3521-00LTectonics3 credits2VW. Behr, S. Willett
AbstractComprehensive understanding of evolution, mechanics, and rheology of divergent, convergent and wrenching tectonic systems from the lithospheric scale to local shallow crustal and outcrop-scales. Evaluation of plate tectonic and other orogenic processes through the study of reference examples of taken in Alps-Himalaya orogenic system.
Learning objectiveComprehensive understanding of evolution, mechanics, and rheology of divergent, convergent and wrenching tectonic systems from the lithospheric scale to local shallow crustal and outcrop-scales.
Assessment of mechanisms responsible for plate movements (the Earth as a heat transfer machine, dynamics of earth mantle, plate driving forces) and subsequent large-scale structures (oceanic basins and cycle of the oceanic lithosphere, convergence and mountain systems and continental growth, etc) through theoretical and experimental information.
Evaluation of plate tectonic and other orogenic processes through the study of reference examples of taken in Alps-Himalaya orogenic system.
ContentPlate tectonic frame work: earth cooling and mantle-plate interaction, three kinds of plate boundaries and their roles and characteristics, cycle of oceanic lithosphere, longlifety and growth of continents, supercontinents.
Rheology of layered lithosphere and upper mantle.
Obduction systems
Collisions systems
Extensional systems
Basin evolution
Passive and active continental margin evolution
LiteratureCondie, K. C. 1997. Plate tectonics and crustal evolution. Butterworth-Heinemann, Oxford.
Cox, A. & Hart, R. B. 1986. Plate tectonics. How it works. Blackwell Scientific Publications, Oxford.
Dewey, J. F. 1977. Suture zone complexities: A review. Tectonophysics 40, 53-67.
Dewey, J. F., Pitman III, W. C., Ryan, W. B. F. & Bonin, J. 1973. Plate tectonics and the evolution of the Alpine system. Geological Society of America Bulletin 84, 3137-3180.
Kearey, P. & Vine, F. J. 1990. Global tectonics. Blackwell Scientific Publications, Oxford.
Park, R. G. 1993. Geological structures and moving plates. Chapman & Hall, Glasgow.
Turcotte, D. L. & Schubert, G. 2002. Geodynamics. Cambridge University Press, Cambridge.
Windley, B. F. 1995. The evolving continents. John Wiley & Sons Ltd, Chichester.
651-4132-00LField Course IV: Alpine Field Course
Priority is given to D-ERDW students. If space is available UZH Geography and Earth System Sciences students may attend this field course at full cost.

No registration through myStudies. The registration for excursions and field courses goes through http://exkursionen.erdw.ethz.ch only.
3 credits6PW. Behr, V. Picotti
Abstract
Learning objective
Prerequisites / NoticeStudents who want to participate hand in a short motivation letter (max. 1 page A4). The final selection will be based on this motivation letter.
Deadline for motivation letter: 31 October 2018

Final decision 20 November 2018

Students registering for the course confirm having read and accepted the terms and conditions for excursions and field courses of D-ERDW https://www.ethz.ch/content/dam/ethz/special-interest/erdw/department/dokumente/studium/exkursionen/AGB_ERDW_Exkursionen_en.pdf