Peter Feller: Catalogue data in Spring Semester 2022

Name Prof. Dr. Peter Feller
FieldMathematics
Address
Professur für Mathematik
ETH Zürich, HG G 61.2
Rämistrasse 101
8092 Zürich
SWITZERLAND
Telephone+41 44 632 70 87
E-mailpeter.feller@math.ethz.ch
URLhttps://people.math.ethz.ch/~pfeller/
DepartmentMathematics
RelationshipAssistant Professor

NumberTitleECTSHoursLecturers
401-2554-00LTopology Information 6 credits3V + 2UP. Feller
AbstractTopics covered include: topological spaces, continuity, connectedness, compactness, product spaces, separation axioms, quotient spaces, homotopy, fundamental group, covering spaces.
Learning objectiveAn introduction to topology -- the domain of mathematics that studies how to define the notion of continuity on a mathematical structure, and how to use it to study and classify these structures.
LiteratureHauptreferenz:

- Klaus Jänich: Topologie (Springer).
https://link.springer.com/book/10.1007/978-3-662-10575-7

Weitere Referenzen:

- Boto von Querenburg: Mengentheoretische Topologie (Springer).
http://link.springer.com/book/10.1007/978-3-642-56860-2

- http://pi.math.cornell.edu/~hatcher/Top/TopNotes.pdf
(für den ersten Teil der Vorlesung über die allgemeine (/mengentheoretische) Topologie)

- http://pi.math.cornell.edu/~hatcher/AT/ATch1.pdf
(für den zweiten Teil der Vorlesung über die Anfänge der algebraischen Topologie (Fundamentalgrupppe, Überlagerungen)).

- James Munkres: Topology (Pearson Modern Classics for Advanced Mathematics Series).

- Lynn Arthur Steen, J. Arthur Seebach Jr.: Counterexamples in Topology (Springer).

- Edwin Spanier: Algebraic Topology (Springer).
401-5530-00LGeometry Seminar Information 0 credits1KM. Burger, M. Einsiedler, P. Feller, A. Iozzi, U. Lang, University lecturers
AbstractResearch colloquium
Learning objective
406-2554-AALTopology
Enrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement.

Any other students (e.g. incoming exchange students, doctoral students) CANNOT enrol for this course unit.
6 credits13RP. Feller
AbstractTopics covered include: Topological and metric spaces, continuity, connectedness, compactness, product spaces, separation axioms, quotient spaces, homotopy, fundamental group, covering spaces.
Learning objectiveAn introduction to topology i.e. the domain of mathematics that studies how to define the notion of continuity on a mathematical structure, and how to use it to study and classify these structures.
Lecture notesSee lecture homepage: https://metaphor.ethz.ch/x/2017/fs/401-2554-00L/
LiteratureJames Munkres: Topology
Prerequisites / NoticeThe precise content changes with the examiner. Candidates must therefore contact the examiner in person before studying the material.