Franziska Scholder-Aemisegger: Catalogue data in Autumn Semester 2021

Name Dr. Franziska Scholder-Aemisegger
E-mailfranziska.aemisegger@env.ethz.ch
URLhttp://iacweb.ethz.ch/staff/aemisegf/index.html
DepartmentEnvironmental Systems Science
RelationshipLecturer

NumberTitleECTSHoursLecturers
701-0473-AALWeather Systems Information
Enrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement.

Any other students (e.g. incoming exchange students, doctoral students) CANNOT enrol for this course unit.
3 credits6RM. A. Sprenger, F. Scholder-Aemisegger
AbstractThe students learn about the dynamical features of the Earth's atmosphere. They interpret satellite imagery and learn about basic concepts in dynamical meteorology. The global circulation is briefly discussed, before introducing the Eulerian and the Lagrangian perspective, which are used to study air streams in extratropical cyclones and to investigate basic aspects in mountain meteorology.
ObjectiveThe students are able to
- explain basic measurement and analysis techniques that are relevant in atmospheric dynamics
- to discuss the mathematical basics of atmospheric dynamics, based on selected atmospheric flow phenomena
- to explain the basic dynamics of the global circulation and of synoptic- and meso-scale flow features
- to explain how mountains influence the atmospheric flow on different scales
- basic understanding of the role of moist adiabatic processes for weather systems and why stable water isotopes are useful in this context
ContentSatellite observations; analysis of vertical soundings; geostrophic and thermal wind; cyclones at mid-latitude; global circulation; north-atlantic oscillation; atmospheric blocking situtations; Eulerian and Lagrangian perspective; potential vorticity; Alpine dynamics (storms, orographic wind); planetary boundary layer
Lecture notesLecture notes and slides
LiteratureAtmospheric Science, An Introductory Survey
John M. Wallace and Peter V. Hobbs, Academic Press
701-0473-00LWeather Systems Information 3 credits2GM. A. Sprenger, F. Scholder-Aemisegger
AbstractSatellite observations; analysis of vertical soundings; geostrophic and thermal wind; cyclones at mid-latitude; global circulation; north-atlantic oscillation; atmospheric blocking situtations; Eulerian and Lagrangian perspective; potential vorticity; Alpine dynamics (storms, orographic wind); planetary boundary layer
ObjectiveThe students are able to
- explain basic measurement and analysis techniques that are relevant in atmospheric dynamics
- to discuss the mathematical basics of atmospheric dynamics, based on selected atmospheric flow phenomena
- to explain the basic dynamics of the global circulation and of synoptic- and meso-scale flow features
- to explain how mountains influence the atmospheric flow on different scales
- basic understanding of the role of moist adiabatic processes for weather systems and why stable water isotopes are useful in this context
ContentSatellite observations; analysis of vertical soundings; geostrophic and thermal wind; cyclones at mid-latitude; global circulation; north-atlantic oscillation; atmospheric blocking situtations; Eulerian and Lagrangian perspective; potential vorticity; Alpine dynamics (storms, orographic wind); planetary boundary layer
Lecture notesLecture notes and slides
LiteratureAtmospheric Science, An Introductory Survey
John M. Wallace and Peter V. Hobbs, Academic Press