Ben Hoare: Catalogue data in Autumn Semester 2018

Name Dr. Ben Hoare
DepartmentPhysics
RelationshipLecturer

NumberTitleECTSHoursLecturers
402-0897-00LIntroduction to String Theory6 credits2V + 1UB. Hoare
AbstractThis course gives an introduction to string theory. The first half of the course will cover the bosonic string and its quantization in flat space, concluding with the introduction of D-branes and T-duality. The second half will cover various advanced topics selected from those listed below.
Learning objectiveThe aim of this course is to motivate the subject of string theory, exploring the important role it has played in the development of modern theoretical and mathematical physics. The goal of the first half of the course is to give a pedagogical introduction to the bosonic string in flat space. Building on this foundation, the goal of the second half of the course is to give a flavour of various more advanced topics.
ContentI. Introduction
II. The relativistic point particle
III. The classical closed string
IV. Quantizing the closed string
V. The open string and D-branes
VI. T-duality in flat space

Possible advanced topics include:
VII. Conformal field theory
VIII. The Polyakov path integral
IX. String interactions
X. Low energy effective actions
XI. Superstring theory
LiteratureLecture notes:

String Theory - D. Tong
http://www.damtp.cam.ac.uk/user/tong/string.html

Lectures on String Theory - G. Arutyunov
http://stringworld.ru/files/Arutyunov_G._Lectures_on_string_theory.pdf

Books:

Superstring Theory - M. Green, J. Schwarz and E. Witten (two volumes, CUP, 1988)
Volume 1: Introduction
Volume 2: Loop Amplitudes, Anomalies and Phenomenology

String Theory - J. Polchinski (two volumes, CUP, 1998)
Volume 1: An Introduction to the Bosonic String
Volume 2: Superstring Theory and Beyond
Errata: http://www.kitp.ucsb.edu/~joep/errata.html

Basic Concepts of String Theory - R. Blumenhagen, D. Lüst and S. Theisen (Springer-Verlag, 2013)