Laura Kobel-Keller: Catalogue data in Spring Semester 2019

Name Dr. Laura Kobel-Keller
Address
Dep. Mathematik
ETH Zürich, HG F 28.2
Rämistrasse 101
8092 Zürich
SWITZERLAND
Telephone+41 44 632 89 40
E-maillaura.kobel-keller@math.ethz.ch
URLhttps://people.math.ethz.ch/~kellerla
DepartmentMathematics
RelationshipLecturer

NumberTitleECTSHoursLecturers
401-0272-00LMathematical Foundations I: Analysis B3 credits2V + 1UL. Kobel-Keller
AbstractBasics about multidimensional analysis.
Ordinary differential equations as mathematical models to describe processes (continuation from Analysis A).
Numerical, analytical and geometrical aspects of differential equations.
ObjectiveIntroduction to calculus in several dimensions.
Building simple models and analysing them mathematically.
Knowledge of the basic concepts.
ContentBasics about multidimensional analysis.
Differential equations as mathematical models to describe processes. Numerical, analytical and geometrical aspects of differential equations.
Literature- G. B. Thomas, M. D. Weir, J. Hass: Analysis 2, Lehr- und Übungsbuch, Pearson-Verlag
- D. W. Jordan, P. Smith: Mathematische Methoden für die Praxis, Spektrum Akademischer Verlag
- M. Akveld/R. Sperb: Analysis I, Analysis II (vdf)
- L. Papula: Mathematik für Ingenieure und Naturwissenschaftler Bde 1,2,3. (Vieweg)
Further reading suggestions will be indicated during the lecture.
401-0282-00LMathematics II Restricted registration - show details
Only for Human Medicine BSc.
4 credits3V + 1UL. Kobel-Keller
AbstractConsolidation and extension of mathematics as the universal language for scientific facts:
The lecture aims on one hand at learning and exercising the mathematical trade and in the other hand at applying the learnt concept to medical, biological, chemical and mechanical problems.
ObjectiveSimple and complex facts can be described and analysed using mathematical tools.
Know and apply tools to discuss and solve (systems of) differential equations, basics of calculus in several variables and of linear algebra.
Used concepts: Euler method, (in-)stability, linear maps, matrix calculus, eigenvalues and eigenvectors, parametrizations, calculus in several variables.
Applications e.g. to modelling infectious diseases.
ContentEuler method, (in-)stability, linear maps, matrix calculus, eigenvalues and eigenvectors, parametrizations, calculus in several variables, line integrals
LiteratureG. B. Thomas, M. D. Weir, J. Hass: Analysis 2, Lehr- und Übungsbuch, Pearson-Verlag
further reading suggestions will be indicated during the lecture