## Laura Kobel-Keller: Catalogue data in Autumn Semester 2023 |

Name | Dr. Laura Kobel-Keller |

Address | Dep. Mathematik ETH Zürich, HG F 28.2 Rämistrasse 101 8092 Zürich SWITZERLAND |

Telephone | +41 44 632 89 40 |

laura.kobel-keller@math.ethz.ch | |

URL | https://people.math.ethz.ch/~kellerla |

Department | Mathematics |

Relationship | Lecturer |

Number | Title | ECTS | Hours | Lecturers | ||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|

401-0271-00L | Mathematical Foundations I: Analysis A | 5 credits | 3V + 2U | L. Kobel-Keller | ||||||||||||||||||||||||||||||||

Abstract | Introduction to calculus in one dimension. Building simple models and analysing them mathematically. Functions of one variable: the notion of a function, of the derivative, the idea of a differential equation, complex numbers, Taylor polynomials and Taylor series. The integral of a function of one variable. | |||||||||||||||||||||||||||||||||||

Objective | Introduction to calculus in one dimension. Building simple models and analysing them mathematically. | |||||||||||||||||||||||||||||||||||

Content | Functions of one variable: the notion of a function, of the derivative, the idea of a differential equation, complex numbers, Taylor polynomials and Taylor series. The integral of a function of one variable. | |||||||||||||||||||||||||||||||||||

Literature | G. B. Thomas, M. D. Weir, J. Hass: Analysis 1, Lehr- und Übungsbuch, Pearson-Verlag R. Sperb/M. Akveld: Analysis I (vdf) L. Papula: Mathematik für Ingenieure und Naturwissenschaftler (3 Bände), Vieweg further reading suggestions will be indicated during the lecture | |||||||||||||||||||||||||||||||||||

Competencies |
| |||||||||||||||||||||||||||||||||||

401-0281-00L | Mathematics I | 4 credits | 3V + 1U | L. Kobel-Keller | ||||||||||||||||||||||||||||||||

Abstract | Introduction of mathematics as the universal language for scientific facts: The lecture aims on one hand at learning and exercising the mathematical trade and in the other hand at applying the learnt concept to medical, biological, chemical and mechanical problems. | |||||||||||||||||||||||||||||||||||

Objective | Simple and complex facts can be described and analysed using mathematical tools. Introduction to calculus in one dimension. Used concepts: the notion of a function, of the derivative and the integral, the idea of a differential equation, complex numbers, Taylor polynomials and Taylor series. Applications e.g. to prognoses, modeling action and dosage of drugs or tumor growth. | |||||||||||||||||||||||||||||||||||

Content | Functions of one variable: the notion of a function, of the derivative, the idea of a differential equation, complex numbers, Taylor polynomials and Taylor series. The integral of a function of one variable. | |||||||||||||||||||||||||||||||||||

Literature | G. B. Thomas, M. D. Weir, J. Hass: Analysis 1, Lehr- und Übungsbuch, Pearson-Verlag further reading suggestions will be indicated during the lecture | |||||||||||||||||||||||||||||||||||

Competencies |
| |||||||||||||||||||||||||||||||||||

401-5350-00L | Analysis Seminar | 0 credits | 1K | F. Da Lio, A. Figalli, N. Hungerbühler, M. Iacobelli, T. Ilmanen, L. Kobel-Keller, S. Mayboroda, T. Rivière, J. Serra, University lecturers | ||||||||||||||||||||||||||||||||

Abstract | Research colloquium | |||||||||||||||||||||||||||||||||||

Objective |