## Mohsen Ghaffari: Catalogue data in Spring Semester 2019 |

Name | Dr. Mohsen Ghaffari |

Field | Computer Science |

URL | https://people.inf.ethz.ch/gmohsen/ |

Department | Computer Science |

Relationship | Assistant Professor (Tenure Track) |

Number | Title | ECTS | Hours | Lecturers | |
---|---|---|---|---|---|

227-0558-00L | Principles of Distributed Computing | 6 credits | 2V + 2U + 1A | R. Wattenhofer, M. Ghaffari | |

Abstract | We study the fundamental issues underlying the design of distributed systems: communication, coordination, fault-tolerance, locality, parallelism, self-organization, symmetry breaking, synchronization, uncertainty. We explore essential algorithmic ideas and lower bound techniques. | ||||

Objective | Distributed computing is essential in modern computing and communications systems. Examples are on the one hand large-scale networks such as the Internet, and on the other hand multiprocessors such as your new multi-core laptop. This course introduces the principles of distributed computing, emphasizing the fundamental issues underlying the design of distributed systems and networks: communication, coordination, fault-tolerance, locality, parallelism, self-organization, symmetry breaking, synchronization, uncertainty. We explore essential algorithmic ideas and lower bound techniques, basically the "pearls" of distributed computing. We will cover a fresh topic every week. | ||||

Content | Distributed computing models and paradigms, e.g. message passing, shared memory, synchronous vs. asynchronous systems, time and message complexity, peer-to-peer systems, small-world networks, social networks, sorting networks, wireless communication, and self-organizing systems. Distributed algorithms, e.g. leader election, coloring, covering, packing, decomposition, spanning trees, mutual exclusion, store and collect, arrow, ivy, synchronizers, diameter, all-pairs-shortest-path, wake-up, and lower bounds | ||||

Lecture notes | Available. Our course script is used at dozens of other universities around the world. | ||||

Literature | Lecture Notes By Roger Wattenhofer. These lecture notes are taught at about a dozen different universities through the world. Distributed Computing: Fundamentals, Simulations and Advanced Topics Hagit Attiya, Jennifer Welch. McGraw-Hill Publishing, 1998, ISBN 0-07-709352 6 Introduction to Algorithms Thomas Cormen, Charles Leiserson, Ronald Rivest. The MIT Press, 1998, ISBN 0-262-53091-0 oder 0-262-03141-8 Disseminatin of Information in Communication Networks Juraj Hromkovic, Ralf Klasing, Andrzej Pelc, Peter Ruzicka, Walter Unger. Springer-Verlag, Berlin Heidelberg, 2005, ISBN 3-540-00846-2 Introduction to Parallel Algorithms and Architectures: Arrays, Trees, Hypercubes Frank Thomson Leighton. Morgan Kaufmann Publishers Inc., San Francisco, CA, 1991, ISBN 1-55860-117-1 Distributed Computing: A Locality-Sensitive Approach David Peleg. Society for Industrial and Applied Mathematics (SIAM), 2000, ISBN 0-89871-464-8 | ||||

Prerequisites / Notice | Course pre-requisites: Interest in algorithmic problems. (No particular course needed.) | ||||

252-4202-00L | Seminar in Theoretical Computer Science The deadline for deregistering expires at the end of the second week of the semester. Students who are still registered after that date, but do not attend the seminar, will officially fail the seminar. | 2 credits | 2S | A. Steger, B. Gärtner, M. Ghaffari, M. Hoffmann, J. Lengler, D. Steurer, B. Sudakov | |

Abstract | Presentation of recent publications in theoretical computer science, including results by diploma, masters and doctoral candidates. | ||||

Objective | To get an overview of current research in the areas covered by the involved research groups. To present results from the literature. | ||||

Prerequisites / Notice | This seminar takes place as part of the joint research seminar of several theory groups. Intended participation is for students with excellent performance only. Formal minimal requirement is passing of one of the courses Algorithms, Probability, and Computing, Randomized Algorithms and Probabilistic Methods, Geometry: Combinatorics and Algorithms, Advanced Algorithms. (If you cannot fulfill this restriction, because this is your first term at ETH, but you believe that you satisfy equivalent criteria, please send an email with a detailed description of your reasoning to the organizers of the seminar.) | ||||

263-4506-00L | Massively Parallel Algorithms | 6 credits | 2V + 1U + 2A | M. Ghaffari | |

Abstract | Data sizes are growing faster than the capacities of single processors. This makes it almost a certainty that the future of computation will rely on parallelism. In this new graduate-level course, we discuss the expanding body of work on the theoretical foundations of modern parallel computation, with an emphasis on the algorithmic tools and techniques for large-scale processing. | ||||

Objective | This course will familiarize the students with the algorithmic tools and techniques in modern parallel computation. In particular, we will discuss the growing body of algorithmic results in the Massively Parallel Computation (MPC) model. This model is a mathematical abstraction of some of the popular large-scale processing settings such as MapReduce, Hadoop, Spark, etc. By the end of the semester, the students will know all the standard tools of this area, as well as the state of the art on a number of the central problems. Our hope is that the course prepares the students for independent research at the frontier of this area, and we will attempt to move in that direction with the course projects. The course assumes no particular familiarity with parallel computation and should be accesible to any student with sufficient theoretical/algorithmic background. In particular, we expect that all students are comfortable with the basics of algorithmics designs and analysis, as well as probability theory. | ||||

Content | The course will cover a sampling of the recent developments (and open questions) at the frontier of research in massively/modern parallel computation. the material will be based on compilation of recent papers on this area, which will be provided throughout the semester. | ||||

Prerequisites / Notice | The class does not expect any prior knowledge in parallel algorithms/computing. Our only prerequisite is the undergraduate class Algorithms, Probability, and Computing (APC) or any other course that can be seen as the equivalent. In particular, much of waht we will discuss uses randomized algorithms and therefore, we will assume that the students are familiar with the tools and techniques in randomized algorithms and analysis (to the extent covered in the APC class). |