Emilio Frazzoli: Catalogue data in Autumn Semester 2022 |
Name | Prof. Dr. Emilio Frazzoli |
Field | Dynamic Systems and Control |
Address | Dyn. Systeme u. Regelungstechnik ETH Zürich, ML K 33 Sonneggstrasse 3 8092 Zürich SWITZERLAND |
emilio.frazzoli@idsc.mavt.ethz.ch | |
Department | Mechanical and Process Engineering |
Relationship | Full Professor |
Number | Title | ECTS | Hours | Lecturers | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
151-0325-00L | Planning and Decision Making for Autonomous Robots | 4 credits | 2V + 1U | E. Frazzoli | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Planning safe and efficient motions for robots in complex environments, often shared with humans and other robots, is a difficult problem combining discrete and continuous mathematics, as well as probabilistic, game-theoretic, and ethical/regulatory aspects. This course will cover the algorithmic foundations of motion planning, with an eye to real-world implementation issues. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | The students will learn how to design and implement state-of-the-art algorithms for planning the motion of robots executing challenging tasks in complex environments. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | Discrete planning, shortest path problems. Planning under uncertainty. Game-theoretic planning. Geometric Representations. Steering methods. Configuration space and collision checking. Potential and Navigation functions. Grids, lattices, visibility graphs. Mathematical Programming. Sampling-based methods. Planning with limited information. Multi-agent Planning. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | Course notes and other education material will be provided for free in an electronic form. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | There is no required textbook, but an excellent reference is Steve Lavalle's book on "Planning Algorithms." | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | Students should have taken basic courses in optimization, control systems, probability theory, and should be familiar with modern programming languages and practices (e.g., Python, and/or C/C++). Previous exposure to robotic systems is a definite advantage. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Competencies |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
151-0591-00L | Control Systems I Note: The previous course title in German until HS21 "Regelungstechnik I". | 4 credits | 2V + 2U | E. Frazzoli | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Analysis and controller synthesis for linear time invariant systems with one input and one output signal (SISO); transition matrix; stability; controllability; observability; Laplace transform; transfer functions; transient and steady state responses. PID control; dynamic compensators; Nyquist theorem. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | Identify the role and importance of control systems in everyday life. Obtain models of single-input single-output (SISO) linear time invariant (LTI) dynamical systems. Linearization of nonlinear models. Interpret stability, observability and controllability of linear systems. Describe and associate building blocks of linear systems in time and frequency domain with equations and graphical representations (Bode plot, Nyquist plot, root locus). Design feedback controllers to meet stability and performance requirements for SISO LTI systems. Explain differences between expected and actual control results. Notions of robustness and other nuisances such as discrete time implementation. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | Modeling and linearization of dynamic systems with single input and output signals. State-space description. Analysis (stability, reachability, observability, etc.) of open-loop systems. Laplace transformation, systems analysis in the frequency domain. Transfer functions and analysis of the influence of its poles and zeros on the system's dynamic behavior. Frequency response. Analysis of closed-loop systems using the Nyquist criterion. Formulation of performance constraints. Specification of closed-loop system behavior. Synthesis of elementary closed-loop control systems (PID, lead/lag compensation, loop shaping). Discrete time state space representation and stability analysis. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | Lecture slides and additional material will be posted online. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | There is no required textbook. A nice introductory book on feedback control, available online for free, is : Feedback Systems: An Introduction for Scientists and Engineers Karl J. Astrom and Richard M. Murray The book can be downloaded at https://fbswiki.org/wiki/index.php/Main_Page | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | Basic knowledge of (complex) analysis and linear algebra. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Competencies |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
227-0920-00L | Seminar in Systems and Control | 0 credits | 1S | F. Dörfler, R. D'Andrea, E. Frazzoli, M. H. Khammash, J. Lygeros, R. Smith | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Current topics in Systems and Control presented mostly by external speakers from academia and industry | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | see above |