Nino Antulov-Fantulin: Catalogue data in Autumn Semester 2021

Name Dr. Nino Antulov-Fantulin
FieldComputational Social Science
Address
Computational Social Science
ETH Zürich, STD F 4
Stampfenbachstrasse 48
8092 Zürich
SWITZERLAND
Telephone+41 44 632 61 57
E-mailnino.antulov@gess.ethz.ch
DepartmentHumanities, Social and Political Sciences
RelationshipPrivatdozent

NumberTitleECTSHoursLecturers
851-0101-86LComplex Social Systems: Modeling Agents, Learning, and Games Restricted registration - show details
Number of participants limited to 100.

Prerequisites: Basic programming skills, elementary probability and statistics.
3 credits2SN. Antulov-Fantulin, T. Asikis, D. Helbing
AbstractThis course introduces mathematical and computational models to study techno-socio-economic systems and the process of scientific research. Students develop a significant project to tackle techno-socio-economic challenges in application domains of complex systems. They are expected to implement a model and communicating their results through a seminar thesis and a short oral presentation.
Learning objectiveThe students are expected to know a programming language and environment (Python, Java or Matlab) as a tool to solve various scientific problems. The use of a high-level programming environment makes it possible to quickly find numerical solutions to a wide range of scientific problems. Students will learn to take advantage of a rich set of tools to present their results numerically and graphically.

The students should be able to implement simulation models and document their skills through a seminar thesis and finally give a short oral presentation.
ContentStudents are expected to implement themselves models of various social processes and systems, including agent-based models, complex networks models, decision making, group dynamics, human crowds, or game-theoretical models.

Part of this course will consist of supervised programming exercises. Credit points are finally earned for the implementation of a mathematical or empirical model from the complexity science literature and the documentation in a seminar thesis.
Lecture notesThe lecture slides will be presented on the course web page after each lecture.
LiteratureAgent-Based Modeling
https://link.springer.com/chapter/10.1007/978-3-642-24004-1_2

Social Self-Organization
https://www.springer.com/gp/book/9783642240034

Traffic and related self-driven many-particle systems
Reviews of Modern Physics 73, 1067
https://journals.aps.org/rmp/abstract/10.1103/RevModPhys.73.1067

An Analytical Theory of Traffic Flow (collection of papers)
https://www.researchgate.net/publication/261629187

Pedestrian, Crowd, and Evacuation Dynamics
https://www.research-collection.ethz.ch/handle/20.500.11850/45424

The hidden geometry of complex, network-driven contagion phenomena (relevant for modeling pandemic spread)
https://science.sciencemag.org/content/342/6164/1337

Further literature will be recommended in the lectures.
Prerequisites / NoticeThe number of participants is limited to the size of the available computer teaching room. The source code related to the seminar thesis should be well enough documented.

Good programming skills and a good understanding of probability & statistics and calculus are expected.
CompetenciesCompetencies
Subject-specific CompetenciesConcepts and Theoriesassessed
Techniques and Technologiesassessed
Method-specific CompetenciesAnalytical Competenciesassessed
Decision-makingassessed
Media and Digital Technologiesfostered
Problem-solvingassessed
Project Managementassessed
Social CompetenciesCommunicationassessed
Cooperation and Teamworkassessed
Customer Orientationfostered
Leadership and Responsibilityassessed
Self-presentation and Social Influence assessed
Sensitivity to Diversityassessed
Negotiationfostered
Personal CompetenciesAdaptability and Flexibilityassessed
Creative Thinkingassessed
Critical Thinkingassessed
Integrity and Work Ethicsassessed
Self-awareness and Self-reflection assessed
Self-direction and Self-management assessed
860-0011-00LAgent-Based Modeling and Social System Simulation - With Coding Project Restricted registration - show details
Only for Science, Technology, and Policy MSc.

Prerequisites: Good mathematical skills, basic programming skills, elementary probability and statistics.
6 credits2S + 2AN. Antulov-Fantulin, T. Asikis, D. Helbing
AbstractThis course introduces mathematical and computational models to study techno-socio-economic systems and the process of scientific research.
Students develop a significant project to tackle techno-socio-economic challenges in application domains of complex systems. They are expected to implement a model and communicating their results through a seminar thesis and a short oral presentation.
Learning objectiveThe students are expected to know a programming language and environment (Python, Java or Matlab) as a tool to solve various scientific problems. The use of a high-level programming environment makes it possible to quickly find numerical solutions to a wide range of scientific problems. Students will learn to take advantage of a rich set of tools to present their results numerically and graphically.

The students should be able to implement simulation models and document their skills through a seminar thesis and finally give a short oral presentation.
ContentStudents are expected to implement themselves models of various social processes and systems, including agent-based models, complex networks models, decision making, group dynamics, human crowds, or game-theoretical models.

Part of this course will consist of supervised programming exercises. Credit points are finally earned for the implementation of a mathematical or empirical model from the complexity science literature and the documentation in a seminar thesis.
Lecture notesThe lecture slides will be presented on the course web page after each lecture.
LiteratureAgent-Based Modeling
https://link.springer.com/chapter/10.1007/978-3-642-24004-1_2

Social Self-Organization
https://www.springer.com/gp/book/9783642240034

Traffic and related self-driven many-particle systems
Reviews of Modern Physics 73, 1067
https://journals.aps.org/rmp/abstract/10.1103/RevModPhys.73.1067

An Analytical Theory of Traffic Flow (collection of papers)
https://www.researchgate.net/publication/261629187

Pedestrian, Crowd, and Evacuation Dynamics
https://www.research-collection.ethz.ch/handle/20.500.11850/45424

The hidden geometry of complex, network-driven contagion phenomena (relevant for modeling pandemic spread)
https://science.sciencemag.org/content/342/6164/1337

Further literature will be recommended in the lectures.
Prerequisites / NoticeThe number of participants is limited to the size of the available computer teaching room. The source code related to the seminar thesis should be well enough documented.

Good programming skills and a good understanding of probability & statistics and calculus are expected.
CompetenciesCompetencies
Subject-specific CompetenciesConcepts and Theoriesassessed
Techniques and Technologiesassessed
Method-specific CompetenciesAnalytical Competenciesassessed
Decision-makingassessed
Media and Digital Technologiesfostered
Problem-solvingassessed
Project Managementassessed
Social CompetenciesCommunicationassessed
Cooperation and Teamworkassessed
Customer Orientationfostered
Leadership and Responsibilityassessed
Self-presentation and Social Influence assessed
Sensitivity to Diversityassessed
Negotiationassessed
Personal CompetenciesAdaptability and Flexibilityassessed
Creative Thinkingassessed
Critical Thinkingassessed
Integrity and Work Ethicsassessed
Self-awareness and Self-reflection assessed
Self-direction and Self-management assessed