Rima Alaifari: Catalogue data in Spring Semester 2023 |
Name | Prof. Dr. Rima Alaifari |
Field | Applied Mathematics |
Address | Seminar für Angewandte Mathematik ETH Zürich, HG G 59.2 Rämistrasse 101 8092 Zürich SWITZERLAND |
Telephone | +41 44 632 32 00 |
rima.alaifari@sam.math.ethz.ch | |
URL | http://www.sam.math.ethz.ch/~rimaa |
Department | Mathematics |
Relationship | Assistant Professor |
Number | Title | ECTS | Hours | Lecturers | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
401-4652-DRL | Inverse Problems Only for ETH D-MATH doctoral students and for doctoral students from the Institute of Mathematics at UZH. The latter need to send an email to Jessica Bolsinger (info@zgsm.ch) with the course number. The email should have the subject „Graduate course registration (ETH)“. | 1 credit | 2G | R. Alaifari | ||||||||||||||||||||
Abstract | Inverse problems arise in many applications in science & engineering. Typically, a physical model describes a forward problem and the task is to reconstruct from measurements, i.e. to perform inversion. In ill-posed problems, these inversions are troublesome as the inverse lacks e.g. stability. Regularization theory studies the controlled extraction of information from such systems. | |||||||||||||||||||||||
Learning objective | The goal of this course is to give an understanding of ill-posedness and how it arises and to introduce the theory of regularization, which gives a mathematical framework to handle these delicate systems. | |||||||||||||||||||||||
Content | Linear inverse problems, compact operators and singular value decompositions, regularization of linear inverse problems, regularization penalties, regularization parameters and parameter choice rules, iterative regularization schemes and stopping criteria, non-linear inverse problems. | |||||||||||||||||||||||
Lecture notes | The lecture notes will be made available during the semester. | |||||||||||||||||||||||
Literature | Engl, H. W., Hanke, M., & Neubauer, A. (1996). Regularization of inverse problems (Vol. 375). Springer Science & Business Media. | |||||||||||||||||||||||
Prerequisites / Notice | Analysis, linear algebra, numerical analysis, ideal but not necessary: functional analysis | |||||||||||||||||||||||
Competencies |
| |||||||||||||||||||||||
401-4652-23L | Inverse Problems | 4 credits | 2G | R. Alaifari | ||||||||||||||||||||
Abstract | Inverse problems arise in many applications in science & engineering. Typically, a physical model describes a forward problem and the task is to reconstruct from measurements, i.e. to perform inversion. In ill-posed problems, these inversions are troublesome as the inverse lacks e.g. stability. Regularization theory studies the controlled extraction of information from such systems. | |||||||||||||||||||||||
Learning objective | The goal of this course is to give an understanding of ill-posedness and how it arises and to introduce the theory of regularization, which gives a mathematical framework to handle these delicate systems. | |||||||||||||||||||||||
Content | Linear inverse problems, compact operators and singular value decompositions, regularization of linear inverse problems, regularization penalties, regularization parameters and parameter choice rules, iterative regularization schemes and stopping criteria, non-linear inverse problems. | |||||||||||||||||||||||
Lecture notes | The lecture notes will be made available during the semester. | |||||||||||||||||||||||
Literature | Engl, H. W., Hanke, M., & Neubauer, A. (1996). Regularization of inverse problems (Vol. 375). Springer Science & Business Media. | |||||||||||||||||||||||
Prerequisites / Notice | Analysis, linear algebra, numerical analysis, ideal but not necessary: functional analysis | |||||||||||||||||||||||
Competencies |
| |||||||||||||||||||||||
401-5650-00L | Zurich Colloquium in Applied and Computational Mathematics | 0 credits | 1K | R. Abgrall, R. Alaifari, H. Ammari, R. Hiptmair, S. Mishra, S. Sauter, C. Schwab | ||||||||||||||||||||
Abstract | Research colloquium | |||||||||||||||||||||||
Learning objective |