Eric Dufresne: Catalogue data in Autumn Semester 2022 |
Name | Prof. Dr. Eric Dufresne |
Field | Soft and Living Materials |
Address | Weiche und Lebende Materialien ETH Zürich, HCI H 529 Vladimir-Prelog-Weg 1-5/10 8093 Zürich SWITZERLAND |
Telephone | +41 44 633 44 84 |
eric.dufresne@mat.ethz.ch | |
Department | Materials |
Relationship | Full Professor |
Number | Title | ECTS | Hours | Lecturers | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
327-1204-00L | Materials at Work I | 4 credits | 4S | R. Spolenak, E. Dufresne, R. Koopmans | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | This course attempts to prepare the student for a job as a materials engineer in industry. The gap between fundamental materials science and the materials engineering of products should be bridged. The focus lies on the practical application of fundamental knowledge allowing the students to experience application related materials concepts with a strong emphasis on case-study mediated learning. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Objective | Teaching goals: to learn how materials are selected for a specific application to understand how materials around us are produced and manufactured to understand the value chain from raw material to application to be exposed to state of the art technologies for processing, joining and shaping to be exposed to industry related materials issues and the corresponding language (terminology) and skills to create an impression of how a job in industry "works", to improve the perception of the demands of a job in industry | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | This course is designed as a two semester class and the topics reflect the contents covered in both semesters. Lectures and case studies encompass the following topics: Strategic Materials (where do raw materials come from, who owns them, who owns the IP and can they be substituted) Materials Selection (what is the optimal material (class) for a specific application) Materials systems (subdivisions include all classical materials classes) Processing Joining (assembly) Shaping Materials and process scaling (from nm to m and vice versa, from mg to tons) Sustainable materials manufacturing (cradle to cradle) Recycling (Energy recovery) After a general part of materials selection, critical materials and materials and design four parts consisting of polymers, metals, ceramics and coatings will be addressed. In the fall semester the focus is on the general part, polymers and alloy case studies in metals. The course is accompanied by hands-on analysis projects on everyday materials. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | Manufacturing, Engineering & Technology Serope Kalpakjian, Steven Schmid ISBN: 978-0131489653 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | Profound knowledge in Physical Metallurgy and Polymer Basics and Polymer Technology required (These subjects are covered at the Bachelor Level by the following lectures: Metalle 1, 2; Polymere 1,2) | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
551-0357-00L | Cellular Matters: From Milestones to Open Questions The number of participants is limited to 22 and will only take place with a minimum of 11 participants. Please sign up until two weeks before the beginning of the semester (for Autumn 2022: by 05.09.2022 end of day) via e-mail to bml@ethz.ch using in the subject: 551-0357-00. In the email body indicate 1) your name, 2) your e-mail address, 3) master/PhD program. The students admitted to this seminar will be informed by e-mail in the week prior to the beginning of the semester. The first lecture will serve to form groups of students and assign papers. | 4 credits | 2S | Y. Barral, F. Allain, P. Arosio, E. Dufresne, D. Hilvert, M. Jagannathan, R. Mezzenga, T. Michaels, G. Neurohr, R. Riek, A. E. Smith, K. Weis, H. Wennemers | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | In this course, the students will explore the quite new topic of biomolecular condensates. Concepts and tools from biology, chemistry, biophysics and soft materials will be used, on one hand, to develop an understanding of the biological properties and functions of biomolecular condensates in health and disease, while, on the other, to inspire new materials. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Objective | In terms of content, you, the student, after a general introduction to the topic, will learn about milestone works and current research questions in the young field of biomolecular condensates (properties, functions and applications) from an interdisciplinary point of view in a course which is a combination of literature (presentations given by pairs of students with different scientific backgrounds) and research seminars (presentations given by the lecturers all active experts in the field, with different backgrounds and expertise). As to the skills, you will have the opportunity to learn how to critically read and evaluate scientific literature, how to give scientific presentations to an interdisciplinary audience (each presentation consisting of an introduction, critical description of the results and discussion of their significance) and substantiate your statements, acquire a critical mindset (pros/cons of chosen approaches/methods and limitations, quality of the data, solidity of the conclusions, possible follow-up experiments) that allows you to ask relevant questions and actively participate to the discussion. With the final presentation you will have the unique opportunity to interact closely with the interdisciplinary group of lecturers (all internationally well-established experts) who will guide you in the choice of a subtopic and related literature. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | In the last decade a new kind of compartments within the cell, the so-called biomolecular condensates, have been observed. This discovery is radically changing our understanding of the cell, its organization and dynamics. The emerging picture is that the cytoplasm and nucleoplasm are highly complex fluids that can (meta)stably segregate into membrane-less sub-compartments, similarly to emulsions. The topic of biomolecular condensates goes beyond the boundaries of traditional disciplines and needs a multi-pronged approach that levers on, and cross-fertilizes, biology, physical chemistry, biophysics and soft materials to develop a proper understanding of the properties, functions in health and disease (Alzheimer’s, Parkinson’s, etc.), as well as possible applications of these biomolecular condensates. Each week the lecture will consist of: 1) a short literature seminar: Pairs of students from different scientific backgrounds will be formed and assigned beforehand to present milestone literature to the class and facilitate the ensuing discussion. In the first class the pairs will be formed, the milestone papers made known to the whole class and assigned to the pairs. 2) a research seminar: the presentation of the milestone literature will serve as the introduction to the lecture by one of the lecturers of the course on their own state-of-the-art research in the field. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | The presentations will be made available after the lectures. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | The milestone papers will be provided in advance. For the final examination, the students will be helped by the lecturers in identifying a research topic and related literature. | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Fostered competencies![]() |
|