Name | Dr. Ulrich Karl Genick |
Address | D-BIOL Center for Active Learning ETH Zürich, HPM E 41.1 Otto-Stern-Weg 3 8093 Zürich SWITZERLAND |
Telephone | +41 44 633 30 47 |
ulrich.genick@biol.ethz.ch | |
Department | Biology |
Relationship | Lecturer |
Number | Title | ECTS | Hours | Lecturers | |
---|---|---|---|---|---|
551-1298-00L | Genetics, Genomics, Bioinformatics | 4 credits | 2V + 2U | E. Hafen, C. Beyer, B. Christen, U. K. Genick, J. Piel, R. Schlapbach, G. Schwank, S. Sunagawa, K. Weis, A. Wutz | |
Abstract | The course provides the basis of modern genetics, genomics and bioinformatics. A special focus is placed on the use of these tools for the understanding of biological processes in bacteria, model organisms and humans. The unit uses the principle of blended learning consisting of self-study modules in Moodle, tasks and input lectures by experts from the department. | ||||
Learning objective | At the end of this course you know the most important genetic tools in different organisms. You can use the essential methods in bioinformatics by using online tools. You know the advantages and disadvantages of various model organisms to understand biological processes. You know the various mutagenesis methods and other tools to disrupt gene function and can discuss their merits and drawbacks. You are aware of the difficulties in choosing a phenotype for selection in a mutagenesis experiment. Finally, you can describe how you would study a specific biological process by choosing a model organism and the appropriate genetic or genomic tools. | ||||
Content | The appearance and function of an organism (phenotype) is determined by the interplay between its genome (genotype) and the environment: Genotype + environment = phenotype. Understanding these interactions to the point where we can ultimately predict the phenotype from knowledge of the genotype and environmental factors is one oft the great challenges of biology. In the course Bio IA you learnt about the composition and function of the genome and how it is inherited. The goal of this course is that you learn how genetic, genomic and bioinformatics methods are used to understand biological processes (the connection between genotype and phenotype). In the first two weeks you will renew and deepen your knowledge of the basic principles of genetics and genomics in interactive learning modules on the Moodle platform. This is followed by an introduction of the basic tools of bioinformatics. You learn to search for specific genome sequences, to align them and to construct pedigrees of related genes. After you have mastered the basic principles you will learn how to study biological processes either by inactivating specific genes or by randomly mutagenizing the entire genome. You will be introduced to different model organisms (bacteria, yeast, Drosophila, mouse) and humans. Conventional genetic methods rely on the alteration of the function of single genes and on the observation of the effect on the organism (phenotype). Based on the observed phenotype one deduces the normal function of the gene. This is a strong simplification since, even if environmental factors are controlled, phenotypes are very rarely controlled by a single gene. It is therefore important to understand the influence of the entire genome in conjunction with environmental factors on a given phenotype (e.g. a human disease). Modern methods in genomics now permit first approaches in this direction. Therefore, the focus of the second part of the unit is on genome-wide association studies. You learn, how the influence of the entire genome on a specific phenotype is detected and what challenges are involved in the analysis and the interpretation of the results. We will examine these methods in model organisms and humans. You will also learn how the genome of cancer cells changes under the constant selection for these cells to survive and how this genome analysis provides new insights into diagnosis and therapy. This course is based on active learning. Each week consists of a learning unit with clearly defined learning goals. In the first two hours you will learn the basics from texts, videos and questionnaires on the Moodle platform. In the third lecture an expert on the topic of the week (e.g. genetic screens in yeast) from the department will give an input lecture that builds on the basic knowledge that you acquired. In the fourth lecture you will discuss the tests and topics of the week with the expert. During the semester you will have access to assistants and lecturers via the Moodle online forum. At the beginning of the learning unit you will take a short multiple-choice test on the content of the course. This formative assessment does not count for your final grade but gives you and us a way to determine where you stand also in relation to your fellow students. A similar formative assessment test will be given at the end of the semester. In this way, we can determine the learning gain during the course and obtain a quantitative feedback on the course. The exam is based on the learning goals of the individual chapters and the questions in the formative assessments. | ||||
Lecture notes | The learning material and slides of the input lectures are available on Moodle. There you will also find further information (articles, links, videos). | ||||
Literature | All texts and references will be available on Moodle. To follow the most recent developments in this rapidly evolving field follow the following experts on Twitter: @dgmacarthur @EricTopol und/oder @ehafen | ||||
Prerequisites / Notice | The course builds on the course Bio IA, in particular on that course's content regarding genetics and genomics. The course is based on self-learning units on Moodle, input lectures by experts from D-BIOL and exercises. | ||||
551-1304-00L | Biochemistry Only for Health Sciences and Technology BSc and Human Medicine BSc. | 3 credits | 3V | U. K. Genick, W. Kovacs, M. Peter | |
Abstract | The course introduces students to the central facts and concepts of biochemistry and covers topics ranging from the structure, physicochemical properties and function of biomolecules; enzymes and their function; human metabolism and its regulation to signal transduction and motor proteins. | ||||
Learning objective | The detailed learning goals of the course can be viewed on the course's Moodle page. | ||||
Lecture notes | There is no traditional script for this course. Instead the course is supported by a Moodle page through which students have access to all necessary texts, exercises, videos and activities. | ||||
Literature | The essential course material will be available on the course's Moodle Page in the form of scripts and lesson handouts. The course does not have an "official" textbook, but students may find a general reference book on the topic interesting. For this purpose, the text "Löffler/Petrides Biochemie und Pathobiochemie" ISBN 978-3-642-17971-6 may be interesting. | ||||
Prerequisites / Notice | The course builds on the content of the courses "Chemie für Mediziner", "Pharmakologie für Mediziner" and "Molekulare Genetik und Zellbiologie". | ||||
551-1304-01L | Pathobiochemistry Only for Human Medicine BSc. | 2 credits | 2G | U. K. Genick, R. C. Dechant, W. Kovacs | |
Abstract | The course accompanies the “Biochemie” course and covers similar topics (properties of biomolecules, metabolism, signal transduction, motor proteins etc.). However, in this course these topics will be covered from the perspective of the pathological consequences that arise when these molecules and process do not function properly. | ||||
Learning objective | The course's detailed learning goals are available on the course's Moodle page. | ||||
Lecture notes | There is no traditional script for this course. Instead the course is supported by a Moodle page through which students have access to all necessary texts, exercises, videos and activities. | ||||
Literature | The essential course material will be available on the course's Moodle Page in the form of scripts and lesson handouts. The course does not have an "official" textbook, but students may find a general reference book on the topic interesting. For this purpose the text "Löffler/Petrides Biochemie und Pathobiochemie" ISBN 978-3-642-17971-6 may be interesting. | ||||
Prerequisites / Notice | The course builds on the content of the "Biochemie" course, which runs parallel to this course as well as on the courses "Chemie für Mediziner", "Pharmakologie für Mediziner" and "Molekulare Genetik und Zellbiologie" from the fall semester. |