Dirk Mohr: Catalogue data in Autumn Semester 2020

Name Prof. Dr. Dirk Mohr
FieldArtificial Intelligence in Mechanics and Manufacturing
KI in Mechanik und Fertigung
ETH Zürich, CLA J 23.2
Tannenstrasse 3
8092 Zürich
Telephone+41 44 632 26 12
DepartmentMechanical and Process Engineering
RelationshipFull Professor

151-0075-20LFormula Student Electric Restricted registration - show details
This course is part of a one-year course. The 14 credit points will be issued at the end of FS2021 with new enrolling for the same Focus-Project in FS2021.

For MAVT BSc and ITET BSc only.

Prerequisites for the focus projects:
a. Basis examination successfully passed
b. Block 1 and 2 successfully passed

For enrollment, please contact the D-MAVT Student Administration.
0 credits15AD. Mohr
AbstractStudents develop and build a product from A-Z! They work in teams and independently, learn to structure problems, to identify solutions, system analysis and simulations, as well as presentation and documentation techniques. They build the product with access to a machine shop and state of the art engineering tools (Matlab, Simulink, etc).
ObjectiveThe various objectives of the Focus Project are:
- Synthesizing and deepening the theoretical knowledge from the basic courses of the 1. - 4. semester
- Team organization, work in teams, increase of interpersonal skills
- Independence, initiative, independent learning of new topic contents
- Problem structuring, solution identification in indistinct problem definitions, searches of information
- System description and simulation
- Presentation methods, writing of a document
- Ability to make decisions, implementation skills
- Workshop and industrial contacts
- Learning and recess of special knowledge
- Control of most modern engineering tools (Matlab, Simulink, CAD, CAE, PDM)
151-0303-00LDimensioning I3 credits3GD. Mohr, B. Berisha, E. Mazza
AbstractIntroduction to Dimensioning of components and machine parts. Basic structural theories are introduced and a short introduction to finite elements is given. Further, elements from fracture mechanics, plasticity and stability of structures are presented.
ObjectiveThe goal of the lecture is to build on and extend the theories from Mechanics 2. Students learn how to implement adequate models for practical dimensioning problems in mechanical engineering and how to solve and critically interpret these models.
Content- Basic problem of continuum mechanics
- Structural theories
- Introduction to finite element methods
- Strength of materials
- Fatigue
- Stability of structures
Lecture notesWill be announced during the first lecture.
LiteratureWill be announced during the first lecture.
151-0525-00LDynamic Behavior of Materials
“Note: previous course title until HS19 "Wave Propagation in Solids".
4 credits2V + 2UD. Mohr, C. Roth, T. Tancogne-Dejean
AbstractLectures and computer labs concerned with the modeling of the deformation response and failure of engineering materials (metals, polymers and composites) subject to extreme loadings during manufacturing, crash, impact and blast events.
ObjectiveStudents will learn to apply, understand and develop computational models of a large spectrum of engineering materials to predict their dynamic deformation response and failure in finite element simulations. Students will become familiar with important dynamic testing techniques to identify material model parameters from experiments. The ultimate goal is to provide the students with the knowledge and skills required to engineer modern multi-material solutions for high performance structures in automotive, aerospace and naval engineering.
ContentTopics include viscoelasticity, temperature and rate dependent plasticity, dynamic brittle and ductile fracture; impulse transfer, impact and wave propagation in solids; computational aspects of material model implementation into hydrocodes; simulation of dynamic failure of structures;
Lecture notesSlides of the lectures, relevant journal papers and user manuals will be provided.
LiteratureVarious books will be recommended pertaining to the topics covered.
Prerequisites / NoticeCourse in continuum mechanics (mandatory), finite element method (recommended)
151-0731-00LBasic Knowledge of Forming Technology
Note: previous course title until HS19 "Forming Technology I - Basic Knowledge".
4 credits2V + 2UP. Hora, D. Mohr
AbstractThe fundamentals of forming technology are ipresented to Mechanical, Production and Material Engineers. The content of the lecture is: Overview of manufacturing with forming techniques, deformation specific description of material properties and their experimental measurement, material laws, residual stresses, heat balance, tribological aspects of forming processes, workpiece and tool failure.
ObjectiveForming technology represents with its 70% global share in manufactured metal volume with respect to yield and cost, the most important manufacturing process in metal-working industries. Typical applications of forming technology range from the manufacturing of sheet metal compontens in auto bodies to applications in food and pharma packaging, fabrication of implants in medical technologies and to the fabrication of leads in microelectronic components. This course introduces the fundamentals which are essential to evaluate metal-forming processes and its industrial applications. This includes, together with the acquirements of the most important forming processes, the characterization of plastic material behavior and manufacturing limits.
ContentOverview of the most important processes of metal-forming technology and its field of applications, characterization of the plastic metal-forming behavior, basic principles of plasto-mechanical calculations, metal-forming residual stresses, thermo-mechanical coupling of metal-forming processes, influence of tribology. Work piece failure through cracking and folding, tool failure through rupture and mechanical wear, metal-forming tools, sheet forming and massive forming processes, handling systems, metal-forming machinery.
Lecture notesja