Dirk Mohr: Katalogdaten im Herbstsemester 2022 |
Name | Herr Prof. Dr. Dirk Mohr |
Lehrgebiet | Künstliche Intelligenz in Mechanik und Fertigung |
Adresse | KI in Mechanik und Fertigung ETH Zürich, CLA J 23.2 Tannenstrasse 3 8092 Zürich SWITZERLAND |
Telefon | +41 44 632 26 12 |
dmohr@ethz.ch | |
URL | http://mohr.ethz.ch |
Departement | Maschinenbau und Verfahrenstechnik |
Beziehung | Ordentlicher Professor |
Nummer | Titel | ECTS | Umfang | Dozierende | |
---|---|---|---|---|---|
151-0075-20L | Formula Student Electric Dieser Kurs ist Teil eines Jahreskurses. Die 14 Kreditpunkte werden am Ende des FS2023 vergeben mit neuer Belegung des gleichen Fokus-Projektes im FS2023. Der Kurs ist nur für MAVT BSc und ITET BSc. Zum Fokusprojekt wird zugelassen, wer: a. die Basisprüfung bestanden hat; b. den Block 1 und 2 bestanden hat. Für die Belegung der Lerneinheit kontaktieren Sie bitte die D-MAVT Studienadministration. | 0 KP | 15A | D. Mohr | |
Kurzbeschreibung | Im Team ein Produkt von A-Z entwickeln und realisieren! Anwenden und Vertiefen des bestehenden Wissens, Arbeiten in Teams, Selbständigkeit, Problemstrukturierung, Lösungsfindung in unscharfen Problemstellungen, Systembeschreibung und -simulation, Präsentation und Dokumentation, Realisationsfähigkeit, Werkstatt- und Industriekontakte, Anwendung modernster Ingenieur-Werkzeuge (Matlab, Simulink usw). | ||||
Lernziel | Die vielfältigen Lernziele dieses Fokus-Projektes sind: - Synthetisieren und Vertiefen des theoretischen Wissens aus den Grundlagenfächern des 1.-4. Semesters - Teamorganisation, Arbeiten in Teams, Steigerung der sozialen Kompetenz - Selbständigkeit, Initiative, selbständiges Lernen neuer Themeninhalte - Problemstrukturierung, Lösungsfindung in unscharfen Problemstellungen, Suchen von Informationen - Systembeschreibung und -simulation - Präsentationstechnik, Dokumentationserstellung - Entscheidungsfähigkeit, Realisationsfähigkeit - Werkstatt- und Industriekontakte - Erweiterung und Vertiefung von Sachwissen - Beherrschung modernster Ingenieur-Werkzeuge (Matlab, Simulink, CAD, CAE, PDM) | ||||
151-0303-00L | Dimensionieren I | 3 KP | 3G | D. Mohr, B. Berisha, E. Mazza | |
Kurzbeschreibung | Einführung in das Dimensionieren von Bauteilen und Maschinenelementen. Grundlagen zur Behandlung strukturmechanischer Auslegungsproblemen werden behandelt: Strukturtheorien wie auch eine Einführung in die Methode der Finiten Elemente. Weiter werden Elemente aus der Bruchmechanik, Plastizität und Stabilität behandelt. Die Anwendung von Regelwerken (Normen) wird anhand von Beispielen behandelt. | ||||
Lernziel | Ziel der Vorlesung ist es, die Grundlagen der Festigkeitslehre (Mechanik 2) anzuwenden bzw. zu erweitern. Studierende lernen wie man aus konkreten Problemstellungen ein geeignetes Modell bildet, dieses löst und kritisch analysiert um typische Auslegungsfragen im Maschinenbau zu beantworten. | ||||
Inhalt | - Grundproblem der Kontinuumsmechanik - Strukturtheorien - Einführung in die Methode der Finiten Elemente - Versagenshypothesen und Festigkeitsnachweise - Ermüdung - Stabilität von Strukturen | ||||
Skript | Wird in der ersten Vorlesung bekannt gegeben. | ||||
Literatur | Wird in der ersten Vorlesung bekannt gegeben. | ||||
151-0833-00L | Applied Finite Element Analysis | 4 KP | 2V + 2U | B. Berisha, D. Mohr | |
Kurzbeschreibung | Die meisten Problemstellungen im Ingenieurwesen sind nichtlinearer Natur. Die Nichtlinearitäten werden hauptsächlich durch nichtlineares Werkstoffverhalten, Kontaktbedingungen und Strukturinstabilitäten hervorgerufen. Im Rahmen dieser Vorlesung werden die theoretischen Grundlagen der nichtlinearen Finite-Element-Methoden zur Lösung von solchen Problemstellungen vermittelt. | ||||
Lernziel | Das Ziel der Vorlesung ist die Vermittlung von Grundkenntnissen der nichtlinearen Finite-Elemente-Methode (FEM). Der Fokus der Vorlesung liegt bei der Vermittlung der theoretischen Grundlagen der nichtlinearen FE-Methoden für implizite und explizite Formulierungen. Typische Anwendungen der nichtlinearen FE-Methode sind Simulationen von: - Crash - Kollaps von Strukturen - Materialverhalten (Metalle und Gummi) - allgemeinen Umformprozessen Insbesondere wird die Modellierung des nichtlinearem Werkstoffverhalten, thermomechanischen Vorgängen und Prozessen mit grossen plastischen Deformationen behandelt. Im Rahmen von begleitenden Uebungen wird die Fähigkeit erworben, selber virtuelle Modelle zur Beschreibung von komplexen nichtlinearen Systemen aufzubauen. Wichtige Modelle wie z.B. Stoffgesetze werden in Matlab programmiert. Das FEM Programm ABAQUS wird eingeführt, um reale Ingenieurprobleme zu simulieren. | ||||
Inhalt | - Einführung in FEM - Kontinuumsmechanische Grundlagen zur Beschreibung grosser plastischer Deformationen - Elasto-plastische Werkstoffmodelle - Lagrange- und Euler-Betrachtungsweisen - FEM-Implementierung von Stoffgesetzen - Elementformulierungen - Implizite und explizite FEM-Methoden - FEM-Formulierung des gekoppelten thermo-mechanischen Problems - Modellierung des Werkzeugkontaktes und von Reibungseinflüssen - Gleichungslöser und Konvergenz - Instabilitätsprobleme | ||||
Skript | Vorlesungsfolien | ||||
Literatur | Bathe, K. J., Finite-Elemente-Methoden, Springer-Verlag, 2002 |