Menny Akka Ginosar: Catalogue data in Autumn Semester 2020 |
Name | PD Dr. Menny Akka Ginosar |
Field | Dynamic systems |
Address | Professur für Mathematik ETH Zürich, HG J 67 Rämistrasse 101 8092 Zürich SWITZERLAND |
Telephone | +41 44 632 70 24 |
menny.akka@math.ethz.ch | |
URL | https://people.math.ethz.ch/~menashea/ |
Department | Mathematics |
Relationship | Privatdozent |
Number | Title | ECTS | Hours | Lecturers | |
---|---|---|---|---|---|
401-0141-00L | Linear Algebra | 5 credits | 3V + 1U | M. Akka Ginosar | |
Abstract | Introduction to Linear Algebra | ||||
Learning objective | Basic knowledge of linear algebra as a tool for solving engineering problems. Understanding of abstract mathematical formulation of technical and scientific problems. Together with Analysis we develop the basic mathematical knowledge for an engineer. | ||||
Content | Introduction and linear systems of equations, matrices, quadratic matrices, determinants and traces, general vector spaces, linear mappings, bases, change of basis, diagonalization, eigenvalues and eigenvectors, orthogonal transformations, scalar-product, inner product spaces. Calculation with MATLAB will be introduced in the first exercise class. | ||||
Lecture notes | The lecturer will provide course notes. | ||||
Literature | K. Nipp, D. Stoffer, Lineare Algebra, VdF Hochschulverlag ETH G. Strang, Lineare Algebra, Springer Larson, Ron. Elementary linear algebra. Nelson Education, 2016. (Englisch) | ||||
401-1151-00L | Linear Algebra I | 7 credits | 4V + 2U | M. Akka Ginosar | |
Abstract | Introduction to the theory of vector spaces for students of mathematics or physics: Basics, vector spaces, linear transformations, solutions of systems of equations, matrices, determinants, endomorphisms, eigenvalues, eigenvectors. | ||||
Learning objective | - Mastering basic concepts of Linear Algebra - Introduction to mathematical methods | ||||
Content | - Basics - Vectorspaces and linear maps - Systems of linear equations and matrices - Determinants - Endomorphisms and eigenvalues | ||||
Literature | - G. Fischer: Lineare Algebra. Springer-Verlag 2014. Link: http://link.springer.com/book/10.1007/978-3-658-03945-5 - K. Jänich: Lineare Algebra. Springer-Verlag 2004. Link: http://link.springer.com/book/10.1007/978-3-662-08375-8 - H.-J. Kowalsky, G. O. Michler: Lineare Algebra. Walter de Gruyter 2003. Link: https://www.degruyter.com/viewbooktoc/product/36737 - S. H. Friedberg, A. J. Insel and L. E. Spence: Linear Algebra. Pearson 2003. https://www.pearsonhighered.com/program/Friedberg-Linear-Algebra-4th-Edition/PGM252241.html - R. Pink: Lineare Algebra I und II. Summary. Link: https://people.math.ethz.ch/%7epink/ftp/LA-Zusammenfassung-20180710.pdf - H. Schichl and R. Steinbauer: Einführung in das mathematische Arbeiten. Springer-Verlag 2012. Link: http://link.springer.com/book/10.1007%2F978-3-642-28646-9 | ||||
401-5370-00L | Ergodic Theory and Dynamical Systems | 0 credits | 1K | M. Akka Ginosar, M. Einsiedler, University lecturers | |
Abstract | Research colloquium | ||||
Learning objective | |||||
406-0141-AAL | Linear Algebra Enrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement. Any other students (e.g. incoming exchange students, doctoral students) CANNOT enrol for this course unit. | 5 credits | 11R | M. Akka Ginosar | |
Abstract | Introduction to Linear Algebra and Numerical Analysis for Engineers. This reading course is based on chapters from the book "Introduction to Linear Algebra" by Gilbert Strang (SIAM 2009), and "A first Course in Numerical Methods" by U. Ascher and C. Greif (SIAM, 2011). | ||||
Learning objective | To acquire basic knowledge of Linear Algebra and some aspects of related numerical metjhods and the ability to apply basic algorithms to simple problems. | ||||
Content | 1 Introduction, calculations using MATLAB 2 Linear systems I 3 Linear systems II 4 Scalar- & vektorproduct 5 Basics of matrix algebra 6 Linear maps 7 Orthogonal maps 8 Trace & determinant 9 General vectorspaces 10 Metric & scalarproducts 11 Basis, basistransform & similar matrices 12 Eigenvalues & eigenvectors 13 Spectral theorem & diagonalisation 14 Repetition | ||||
Literature | Gilbert Strang, Introduction to Linear Algebra, 4th ed., SIAM & Wellesley-Cambridge Press, 2009. U. Ascher and C. Greif, A first Course in Numerical Methods", SIAM, 2011. | ||||
Prerequisites / Notice | Knowledge of elementary calculus |