Menny Akka Ginosar: Catalogue data in Autumn Semester 2020

Name PD Dr. Menny Akka Ginosar
FieldDynamic systems
Address
Professur für Mathematik
ETH Zürich, HG J 67
Rämistrasse 101
8092 Zürich
SWITZERLAND
Telephone+41 44 632 70 24
E-mailmenny.akka@math.ethz.ch
URLhttps://people.math.ethz.ch/~menashea/
DepartmentMathematics
RelationshipPrivatdozent

NumberTitleECTSHoursLecturers
401-0141-00LLinear Algebra Restricted registration - show details 5 credits3V + 1UM. Akka Ginosar
AbstractIntroduction to Linear Algebra
Learning objectiveBasic knowledge of linear algebra as a tool for solving engineering problems.
Understanding of abstract mathematical formulation of technical and scientific problems. Together with Analysis we develop the basic mathematical knowledge for an engineer.
ContentIntroduction and linear systems of equations, matrices, quadratic matrices, determinants and traces, general vector spaces, linear mappings, bases, change of basis, diagonalization, eigenvalues and eigenvectors, orthogonal transformations, scalar-product, inner product spaces.

Calculation with MATLAB will be introduced in the first exercise class.
Lecture notesThe lecturer will provide course notes.
LiteratureK. Nipp, D. Stoffer, Lineare Algebra, VdF Hochschulverlag ETH

G. Strang, Lineare Algebra, Springer

Larson, Ron. Elementary linear algebra. Nelson Education, 2016. (Englisch)
401-1151-00LLinear Algebra I Information Restricted registration - show details 7 credits4V + 2UM. Akka Ginosar
AbstractIntroduction to the theory of vector spaces for students of mathematics or physics: Basics, vector spaces, linear transformations, solutions of systems of equations, matrices, determinants, endomorphisms, eigenvalues, eigenvectors.
Learning objective- Mastering basic concepts of Linear Algebra
- Introduction to mathematical methods
Content- Basics
- Vectorspaces and linear maps
- Systems of linear equations and matrices
- Determinants
- Endomorphisms and eigenvalues
Literature- G. Fischer: Lineare Algebra. Springer-Verlag 2014. Link: http://link.springer.com/book/10.1007/978-3-658-03945-5
- K. Jänich: Lineare Algebra. Springer-Verlag 2004. Link: http://link.springer.com/book/10.1007/978-3-662-08375-8
- H.-J. Kowalsky, G. O. Michler: Lineare Algebra. Walter de Gruyter 2003. Link: https://www.degruyter.com/viewbooktoc/product/36737
- S. H. Friedberg, A. J. Insel and L. E. Spence: Linear Algebra. Pearson 2003. https://www.pearsonhighered.com/program/Friedberg-Linear-Algebra-4th-Edition/PGM252241.html
- R. Pink: Lineare Algebra I und II. Summary. Link: https://people.math.ethz.ch/%7epink/ftp/LA-Zusammenfassung-20180710.pdf
- H. Schichl and R. Steinbauer: Einführung in das mathematische Arbeiten. Springer-Verlag 2012. Link: http://link.springer.com/book/10.1007%2F978-3-642-28646-9
401-5370-00LErgodic Theory and Dynamical Systems Information 0 credits1KM. Akka Ginosar, M. Einsiedler, University lecturers
AbstractResearch colloquium
Learning objective
406-0141-AALLinear Algebra
Enrolment ONLY for MSc students with a decree declaring this course unit as an additional admission requirement.

Any other students (e.g. incoming exchange students, doctoral students) CANNOT enrol for this course unit.
5 credits11RM. Akka Ginosar
AbstractIntroduction to Linear Algebra and Numerical Analysis for Engineers. This reading course is based on chapters from the book "Introduction to Linear Algebra" by Gilbert Strang (SIAM 2009), and "A first Course in Numerical Methods" by U. Ascher and C. Greif (SIAM, 2011).
Learning objectiveTo acquire basic knowledge of Linear Algebra and some aspects of related numerical metjhods and the ability to apply basic algorithms to simple problems.
Content1 Introduction, calculations using MATLAB
2 Linear systems I
3 Linear systems II
4 Scalar- & vektorproduct
5 Basics of matrix algebra
6 Linear maps
7 Orthogonal maps
8 Trace & determinant
9 General vectorspaces
10 Metric & scalarproducts
11 Basis, basistransform & similar matrices
12 Eigenvalues & eigenvectors
13 Spectral theorem & diagonalisation
14 Repetition
LiteratureGilbert Strang, Introduction to Linear Algebra, 4th ed., SIAM & Wellesley-Cambridge Press, 2009.

U. Ascher and C. Greif, A first Course in Numerical Methods", SIAM, 2011.
Prerequisites / NoticeKnowledge of elementary calculus