Orçun Göksel: Katalogdaten im Frühjahrssemester 2018 |
Name | Herr Dr. Orçun Göksel |
Namensvarianten | Orcun Goksel Orcun Göksel Orçun Göksel |
Lehrgebiet | Computergestützte Anwendungen in der Medizin |
ogoksel@ethz.ch | |
URL | http://people.ee.ethz.ch/~ogoksel/ |
Departement | Informationstechnologie und Elektrotechnik |
Beziehung | Assistenzprofessor |
Nummer | Titel | ECTS | Umfang | Dozierende | |
---|---|---|---|---|---|
227-0384-00L | Ultrasound Fundamentals, Imaging, and Medical Applications Number of participants limited to 25. | 4 KP | 3G | O. Göksel | |
Kurzbeschreibung | Ultrasound is the only imaging modality that is nonionizing (safe), real-time, cost-effective, and portable, with many medical uses in diagnosis, intervention guidance, surgical navigation, and as a therapeutic option. In this course, we introduce conventional and prospective applications of ultrasound, starting with the fundamentals of ultrasound physics and imaging. | ||||
Lernziel | Students can use the fundamentals of ultrasound, to analyze and evaluate ultrasound imaging techniques and applications, in particular in the field of medicine, as well as to design and implement basic applications. | ||||
Inhalt | Ultrasound is used in wide range of products, from car parking sensors, to assessing fault lines in tram wheels. Medical imaging is the eye of the doctor into body; and ultrasound is the only imaging modality that is nonionizing (safe), real-time, cheap, and portable. Some of its medical uses include diagnosing breast and prostate cancer, guiding needle insertions/biopsies, screening for fetal anomalies, and monitoring cardiac arrhythmias. Ultrasound physically interacts with the tissue, and thus can also be used therapeutically, e.g., to deliver heat to treat tumors, break kidney stones, and targeted drug delivery. Recent years have seen several novel ultrasound techniques and applications – with many more waiting in the horizon to be discovered. This course covers ultrasonic equipment, physics of wave propagation, numerical methods for its simulation, image generation, beamforming (basic delay-and-sum and advanced methods), transducers (phased-, linear-, convex-arrays), near- and far-field effect, imaging modes (e.g., A-, M-, B-mode), Doppler and harmonic imaging, ultrasound signal processing techniques (e.g., filtering, time-gain-compensation, displacement tracking), image analysis techniques (deconvolution, real-time processing, tracking, segmentation, computer-assisted interventions), acoustic-radiation force, plane-wave imaging, contrast agents, micro-bubbles, elastography, biomechanical characterization, high-intensity focused ultrasound and therapy, lithotripsy, histotripsy, photo-acoustics phenomenon and opto-acoustic imaging, as well as sample non-medical applications such as the basics of non-destructive testing (NDT). | ||||
Voraussetzungen / Besonderes | Hands-on exercises will help apply concepts learned in the module, and will involve a mix of designing, implementing, and evaluating in simulation environments, such as Matlab FieldII and k-Wave toolboxes. Prerequisites: Familiarity with basic numerical methods. Basic programming skills and experience in Matlab. |