Paul D. Nelson: Katalogdaten im Herbstsemester 2020 |
Name | Herr Dr. Paul D. Nelson |
URL | http://www.math.ethz.ch/~nelsonpa |
Departement | Mathematik |
Beziehung | Assistenzprofessor |
Nummer | Titel | ECTS | Umfang | Dozierende | |
---|---|---|---|---|---|
401-0373-00L | Mathematics III: Partial Differential Equations | 4 KP | 2V + 1U | P. D. Nelson | |
Kurzbeschreibung | Beispiele partieller Differentialgleichungen. Lineare partielle Differentialgleichungen. Einführung in die Methode der Separation der Variablen. Fourierreihen, Fouriertransformation, Laplacetransformation und Anwendungen auf die Lösung einiger partieller Differentialgleichungen (Laplace-Gleichung, Wärmeleitungsgleichung, Wellengleichung). | ||||
Lernziel | Das Hauptziel ist es, grundlegende Kenntnisse der klassischen Werkzeuge zur expliziten Lösung linearer partieller Differentialgleichungen zu vermitteln. | ||||
Inhalt | 1) Beispiele partieller Differentialgleichungen - Klassifikation - Superpositionsprinzip 2) Eindimensionale Wellengleichung - Die Formel von d'Alembert - Das Duhamelsche Prinzip 3) Fourierreihen - Darstellung stückweise stetiger Funktionen durch Fourierreihen - Beispiele und Anwendungen 4) Separation der Variablen - Lösung von Wellen- und Wärmeleitungsgleichung - Homogene und inhomogene Randbedingungen, Dirichlet- und Neumann-Randbedingungen 5) Laplace-Gleichung - Lösung der Laplace-Gleichung auf Rechteck, Kreisscheibe und Kreisring - Poissonsche Integralformel - Mittelwertsatz und Maximumprinzip 6) Fouriertransformation - Herleitung und Definition - Inverse Fouriertransformation und Fouriersche Inversionsformel - Interpretation und Eigenschaften der Fouriertransformation - Lösung der Wärmeleitungsgleichung 7) ... | ||||
Skript | See the course web site (linked under Lernmaterialien) | ||||
Literatur | 1) S.J. Farlow, Partial Differential Equations for Scientists and Engineers, Dover Books on Mathematics, NY. 2) N. Hungerbühler, Einführung in partielle Differentialgleichungen für Ingenieure, Chemiker und Naturwissenschaftler, vdf Hochschulverlag, 1997. Weitere Bücher: 3) T. Westermann: Partielle Differentialgleichungen, Mathematik für Ingenieure mit Maple, Band 2, Springer-Lehrbuch, 1997 (chapters XIII,XIV,XV,XII) 4) E. Kreyszig, Advanced Engineering Mathematics, John Wiley & Sons (chapters 1,2,11,12,6) For additional sources, see the course web site (linked under Lernmaterialien) | ||||
Voraussetzungen / Besonderes | Vorausgesetzt wird Vorwissen über * Funktionen von mehreren Variablen (Riemann-Integral in zwei oder drei Variablen, Variablensubstitution in Integralen, partiellen Ableitungen, Differenzierbarkeit, Jacobi-Matrix); * Folgen und Reihen (von Zahlen und Funktionen); * Grundkenntnisse der gewöhnlichen linearen Differenzialgleichungen. | ||||
401-5110-00L | Number Theory Seminar | 0 KP | 1K | Ö. Imamoglu, P. S. Jossen, E. Kowalski, P. D. Nelson, R. Pink, G. Wüstholz | |
Kurzbeschreibung | Research colloquium | ||||
Lernziel |