Paul D. Nelson: Catalogue data in Autumn Semester 2020

Name Dr. Paul D. Nelson
URLhttp://www.math.ethz.ch/~nelsonpa
DepartmentMathematics
RelationshipAssistant Professor

NumberTitleECTSHoursLecturers
401-0373-00LMathematics III: Partial Differential Equations Information Restricted registration - show details 4 credits2V + 1UP. D. Nelson
AbstractExamples of partial differential equations. Linear partial differential equations. Separation of variables. Fourier series, Fourier transform, Laplace transform. Applications to solving commonly encountered linear partial differential equations (Laplace's Equation, Heat Equation, Wave Equation).
ObjectiveClassical tools to solve the most common linear partial differential equations.
Content1) Examples of partial differential equations
- Classification of PDEs
- Superposition principle

2) One-dimensional wave equation
- D'Alembert's formula
- Duhamel's principle

3) Fourier series
- Representation of piecewise continuous functions via Fourier series
- Examples and applications

4) Separation of variables
- Solution of wave and heat equation
- Homogeneous and inhomogeneous boundary conditions
- Dirichlet and Neumann boundary conditions

5) Laplace equation
- Solution of Laplace's equation on the rectangle, disk and annulus
- Poisson formula
- Mean value theorem and maximum principle

6) Fourier transform
- Derivation and definition
- Inverse Fourier transformation and inversion formula
- Interpretation and properties of the Fourier transform
- Solution of the heat equation

7) Laplace transform (if time allows)
- Definition, motivation and properties
- Inverse Laplace transform of rational functions
- Application to ordinary differential equations
Lecture notesSee the course web site (linked under Lernmaterialien)
Literature1) S.J. Farlow, Partial Differential Equations for Scientists and
Engineers, Dover Books on Mathematics, NY.

2) N. Hungerbühler, Einführung in partielle Differentialgleichungen
für Ingenieure, Chemiker und Naturwissenschaftler, vdf
Hochschulverlag, 1997.

Additional books:

3) T. Westermann: Partielle Differentialgleichungen, Mathematik für
Ingenieure mit Maple, Band 2, Springer-Lehrbuch, 1997 (chapters
XIII,XIV,XV,XII)

4) E. Kreyszig, Advanced Engineering Mathematics, John Wiley & Sons
(chapters 1,2,11,12,6)

For additional sources, see the course web site (linked under Lernmaterialien)
Prerequisites / NoticeRequired background:

1) Multivariate functions: partial derivatives, differentiability, Jacobian matrix, Jacobian determinant

2) Multiple integrals: Riemann integrals in two or three variables, change of variables

2) Sequences and series of numbers and of functions

3) Basic knowledge of ordinary differential equations
401-5110-00LNumber Theory Seminar Information 0 credits1KÖ. Imamoglu, P. S. Jossen, E. Kowalski, P. D. Nelson, R. Pink, G. Wüstholz
AbstractResearch colloquium
Objective