Florian Dörfler: Katalogdaten im Frühjahrssemester 2018

NameHerr Prof. Dr. Florian Dörfler
LehrgebietKomplexe Regelsysteme
Adresse
Professur f. Komplexe Regelsysteme
ETH Zürich, ETL I 26
Physikstrasse 3
8092 Zürich
SWITZERLAND
Telefon+41 44 632 72 88
E-Maildoerfler@control.ee.ethz.ch
URLhttp://people.ee.ethz.ch/~floriand/
DepartementInformationstechnologie und Elektrotechnik
BeziehungOrdentlicher Professor

NummerTitelECTSUmfangDozierende
227-0103-AALRegelsysteme Information
Belegung ist NUR erlaubt für MSc Studierende, die diese Lerneinheit als Auflagenfach verfügt haben.

Alle anderen Studierenden (u.a. auch Mobilitätsstudierende, Doktorierende) können diese Lerneinheit NICHT belegen.
6 KP8RF. Dörfler
KurzbeschreibungVermittlung von fachübergreifenden Konzepten und Methoden zur mathematischen Beschreibung und Analyse von dynamischen Systemen. Konzept der Rückführung, Entwurf von Regelungen für Eingrössen- und Mehrgrössenstrecken.
LernzielVermittlung von fachübergreifenden Konzepten und Methoden zur mathematischen Beschreibung und Analyse von dynamischen Systemen. Konzept der Rückführung, Entwurf von Regelungen für Eingrössen- und Mehrgrössenstrecken.
InhaltProzessautomatisierung. Prinzip der Regelung. Modellierung dynamischer Systeme - Beispiele, Zustandsraumdarstellung, Linearisierung, analytische/numerische Lösung. Laplace Transformation, Systemantworten für Systeme 1. und 2. Ordnung - Einfluss von zusätzlichen Nullstellen und Polen. Regelkreis-Idee der Rückführung. PID Regler, Ziegler-Nichols Einstellung. Stabilität, Routh-Hurwitz Kriterium, Wurzelortskurve. Frequenzgang, Bode-Diagramm, Bode gain/ phase relationship, Reglerentwurf via "loop- shaping", Nyquist Kriterium. Feedforward Compensation/Störgrössenaufschaltung, Kaskadenregelung. Mehrvariablensysteme (Übertragungsmatrix, Zustandsraumdarstellung), Mehrschlaufenregelung, Problem der Kopplung, Relative Gain Array, Entkopplungskompensator, Sensitivität auf Modellunsicherheit. Zustandsraumdarstellung (Modalform, Steuerbarkeit, control/observer canonical form), Zustandsregelung, Polvor- gabe/Wahl der Pole. Beobachter, Beobachtbarkeit, Dualität, Separationsprinzip. LQ Regulator, Optimale Zustandsschätzung.
LiteraturG.F. Franklin, J.D. Powell, A. Emami-Naeini. Feedback Control of Dynamic Systems. 6th edition, Prentice Hall, International Version, 2009, Reading, ISBN 978-0-1350-150-9. Broschierte Studienausgabe CHF 150.-, (Frühjahr 2010).
Voraussetzungen / BesonderesVoraussetzungen:
Signal- und Systemtheorie / MATLAB-Kenntnisse
227-0690-09LAdvanced Topics in Control (Spring 2018) Information
New topics are introduced every year.
4 KP2V + 2UF. Dörfler
KurzbeschreibungThis class will introduce students to advanced, research level topics in the area of automatic control. Coverage varies from semester to semester, repetition for credit is possible, upon consent of the instructor. During the Spring Semester 2018 the class will concentrate on distributed systems and control.
LernzielThe intent is to introduce students to advanced research level topics in the area of automatic control. The course is jointly organized by Prof. R. D'Andrea, L. Guzzella, J. Lygeros, M. Morari, R. Smith, and F. Dörfler. Coverage and instructor varies from semester to semester. Repetition for credit is possible, upon consent of the instructor. During the Spring Semester 2018 the class will be taught by F. Dörfler and will focus on distributed systems and control.
InhaltDistributed control systems include large-scale physical systems, engineered multi-agent systems, as well as their interconnection in cyber-physical systems. Representative examples are the electric power grid, camera networks, and robotic sensor networks. The challenges associated with these systems arise due to their coupled, distributed, and large-scale nature, and due to limited sensing, communication, and control capabilities. This course covers modeling, analysis, and design of distributed control systems.

Topics covered in the course include:
- the theory of graphs (with an emphasis on algebraic and spectral graph theory);
- basic models of multi-agent and interconnected dynamical systems;
- continuous-time and discrete-time distributed averaging algorithms (consensus);
- coordination algorithms for rendezvous, formation, flocking, and deployment;
- applications in robotic coordination, coupled oscillators, social networks, sensor networks, electric power grids, epidemics, and positive systems.
SkriptA set of self-contained set of lecture notes will be made available.
LiteraturRelevant papers and books will be made available through the course website.
Voraussetzungen / BesonderesControl systems (227-0216-00L), Linear system theory (227-0225-00L), or equivalents, as well as sufficient mathematical maturity.
227-0920-00LSeminar in Systems and Control Information 0 KP1SF. Dörfler, R. D'Andrea, J. Lygeros, R. Smith
KurzbeschreibungCurrent topics in Systems and Control presented mostly by external speakers from academia and industry.
Lernzielsee above
227-0928-00LDistinguished Lecture Series in Control Belegung eingeschränkt - Details anzeigen 1 KP1VF. Dörfler
KurzbeschreibungThis seminar introduces students to advanced scientific methods system theory, automatic control and optimization. The seminar is primarily delivered by an external distinguished speaker and its contents will be tailored towards doctoral and research-interested students. The detailed coverage varies every semester. In spring 2018 the seminar will concentrate on distributed computation and control.
LernzielThe intent is to introduce students to advanced scientific methods in the areas of system theory, automatic control, and optimization. The seminar is jointly by Prof. F. Dörfler, it will be primarily delivered by an external distinguished speaker, and its contents will be tailored towards doctoral and research-interested students. The detailed coverage varies from semester to semester. During the Spring Semester 2018 the seminar will concentrate on distributed computation and control.
InhaltOver the past decade there has been growing in interest in distributed control problems of all types. Among these are consensus problems including flocking and distributed averaging, the multiagent rendezvous problem, and the distributed control of multi‐agent formations. The aim of these lectures is to explain what these problems are and to discuss their solutions. Related concepts from spectral graph theory, rigid graph theory, nonhomogeneous Markov chain theory, stability theory, and linear system theory will be covered.