Martin O. Saar: Katalogdaten im Herbstsemester 2017

NameHerr Prof. Dr. Martin O. Saar
LehrgebietGeothermische Energie und Geofluide
Adresse
Institut für Geophysik
ETH Zürich, NO F 51.2
Sonneggstrasse 5
8092 Zürich
SWITZERLAND
Telefon+41 44 632 59 76
E-Mailmartin.saar@erdw.ethz.ch
DepartementErdwissenschaften
BeziehungOrdentlicher Professor

NummerTitelECTSUmfangDozierende
651-3507-00LEinführung in die Ozeanographie und Hydrogeologie3 KP2VD. Vance, M. O. Saar
KurzbeschreibungDer Kurs dient der Einführung in die Hydrogeologie und Ozeanographie für Erdwissenschaftler. Er bietet einen Überblick der physikalischen Bedingungen, die den Wasserfluss in Flüssen, Aquiferen und Ozeanen bestimmen und behandelt die Grundlagen der Grundwasserchemie, der biogeochemischen Zyklen in den Ozeanen, und der Rolle der Ozeane als Kohlenstoffreservoire und ihrer dynamischen Redox Zustände.
LernzielTo understand and describe the basic principles of the hydrologic cycle and water flow in streams and aquifers.

To conduct simple calculations of water transfer in streams and aquifers as well as of flood frequencies and magnitudes.

To discuss surface and groundwater as a water resource.

To interpret different ion distributions in aquifers in terms of bacic water chemistry, fluid-mineral reactions, water contamination, and water origin.

To understand the major features of ocean basins and the tectonic controls on their structure.

To identify the major controls on the temperature, salinity and density structure of the oceans.

To describe how these controls interact to drive surface and interior ocean circulation.

To interpret different kinds of element distribution in the oceans in terms of basic chemistry, sinks, sources and internal biogeochemical cycling.

To discuss the cycles of carbon and oxygen in the ocean, with a view to the critical analysis of how the oceans respond to, cause and record the dynamics of these cycles in Earth history.
InhaltThis course provides an introduction to oceanography and hydrogeology, with a special focus on the basic physicochemical concepts that control the properties and behaviour of two major reservoirs of water on Earth.

The hydrogeology component will: 1) describe the hydrologic cycle, with a focus on the importance of groundwater to society; introduce the basic physical aspects of groundwater flow, including Darcy's law, hydraulic head, hydraulic conductivity, aquifers; 2) describe the basics of groundwater chemistry, including major ions and mean meteoric water line, basics of groundwater contamination; 3) introduce the interface with the oceans, including hydrothermal circulation at mid-ocean ridges, ocean-water intrusion into groundwater at coasts.

The oceanography component will: 1) provide an overview of the physical circulation of the oceans, including its importance for heat transfer around the surface of the Earth and for climate; 2) describe the basic processes that control the chemistry of the oceans, including its temporal and spatial variability; 3) introduce some simple concepts in biological oceanography, including the dependence of ocean ecology on nutrient distributions. There will be a specific focus on how the physics, chemistry and biology of the ocean might have changed through Earth history, and the impact of oceanic processes on Earth's climate.
SkriptVorhanden
LiteraturTalley, L.D., Pickard, G.L., Emery, W.J. and Swift, J.H. Descriptive Physical Oceanography, an Introduction. (2011) Online textbook, available at http://www.sciencedirect.com/science/book/9780750645522.

Libes, S.M. (2009) Introduction to marine biogeochemistry. 2nd edition. Academic Press
Voraussetzungen / BesonderesChemie I and II, Physik I and II, Mathematik I and II.
651-3543-00LGeophysik I
Dieser Kurs ersetzt 651-3543-00 Seismologie. Sofern Seismologie absolviert wurde, darf Geophysik I nicht absolviert werden.
4 KP2V + 1UD. Giardini, M. O. Saar
KurzbeschreibungAllgemeine Kenntnisse in Seismologie, Strömungsmechanik und Wärmetransport.
Lernziel
651-4109-00LGeothermal Energy3 KP3GM. O. Saar, P. Bayer, D. Karvounis, F. Samrock
KurzbeschreibungThe course will introduce students to the general principles of Geothermics and is suitable for students who have a basic knowledge of Geoscience or Environmental Science (equivalent of a Bachelor degree).
LernzielTo provide students with a broad understanding of the systems used to exploit geothermal energy in diverse settings.
InhaltThe course will begin with an overview of heat generation and the thermal structure of the Earth. The basic theory describing the flow of heat in the shallow crust will be covered, as will be the methods used to measure it. Petrophysical parameters of relevance to Geothermics, such as thermal conductivity, heat capacity and radiogenic heat productivity, are described together with the laboratory and borehole measurement techniques used to estimate their values. The focus will then shift towards the exploitation of geothermal heat at various depths and temperatures, ranging from electricity and heat production in various types of deep geothermal systems (including high and medium temperature hydrothermal systems, and Engineered Geothermal Systems at depths of 5 km or more), to ground-source heat pumps installed in boreholes at depths of a few tens to hundreds of meters for heating domestic houses.
The subjects covered are as follows:
Week 1: Introduction. Earth's thermal structure. Conductive heat flow
Week 2: Heat flow measurement. Advective heat flow. Petrophysical parameters and their measurement.
Week 3: Temperature measurement. Hydrothermal reservoirs & well productivity
Week 4: Hydrological characterisation of reservoirs. Drilling. Optimized systems
Week 5: Petrothermal or Engineered Geothermal Systems
Week 6: Low-enthalpy systems 1
Week 7: Low-enthalpy systems 2.
SkriptThe script for each class will be available for download from the Ilias website no later than 1 day before the class.