Alessandro Sisto: Katalogdaten im Herbstsemester 2019 |
Name | Herr Dr. Alessandro Sisto |
URL | http://www.math.ethz.ch/~alsisto |
Departement | Mathematik |
Beziehung | Assistenzprofessor |
Nummer | Titel | ECTS | Umfang | Dozierende | |
---|---|---|---|---|---|
401-3001-61L | Algebraic Topology I ![]() | 8 KP | 4G | A. Sisto | |
Kurzbeschreibung | This is an introductory course in algebraic topology, which is the study of algebraic invariants of topological spaces. Topics covered include: singular homology, cell complexes and cellular homology, the Eilenberg-Steenrod axioms. | ||||
Lernziel | |||||
Literatur | 1) A. Hatcher, "Algebraic topology", Cambridge University Press, Cambridge, 2002. Book can be downloaded for free at: http://www.math.cornell.edu/~hatcher/AT/ATpage.html See also: http://www.math.cornell.edu/~hatcher/#anchor1772800 2) G. Bredon, "Topology and geometry", Graduate Texts in Mathematics, 139. Springer-Verlag, 1997. 3) E. Spanier, "Algebraic topology", Springer-Verlag | ||||
Voraussetzungen / Besonderes | You should know the basics of point-set topology. Useful to have (though not absolutely necessary) basic knowledge of the fundamental group and covering spaces (at the level covered in the course "topology"). Some knowledge of differential geometry and differential topology is useful but not strictly necessary. Some (elementary) group theory and algebra will also be needed. | ||||
401-5530-00L | Geometry Seminar ![]() | 0 KP | 1K | M. Einsiedler, P. Feller, U. Lang, A. Sisto, Uni-Dozierende | |
Kurzbeschreibung | Research colloquium | ||||
Lernziel | |||||
406-2554-AAL | Topology Belegung ist NUR erlaubt für MSc Studierende, die diese Lerneinheit als Auflagenfach verfügt haben. Alle anderen Studierenden (u.a. auch Mobilitätsstudierende, Doktorierende) können diese Lerneinheit NICHT belegen. | 6 KP | 13R | A. Sisto | |
Kurzbeschreibung | Topological spaces, continuous maps, connectedness, compactness, metric spaces, quotient spaces, homotopy, fundamental group and covering spaces, van Kampen Theorem. | ||||
Lernziel | |||||
Literatur | James Munkres: Topology | ||||
Voraussetzungen / Besonderes | The precise content changes with the examiner. Candidates must therefore contact the examiner in person before studying the material. |