Alessandro Sisto: Katalogdaten im Herbstsemester 2018

NameHerr Dr. Alessandro Sisto

401-0243-00LAnalysis III Information 3 KP2V + 1UA. Sisto
KurzbeschreibungWe will model and solve scientific problems with partial differential equations. Differential equations which are important in applications will be classified and solved. Elliptic, parabolic and hyperbolic differential equations will be treated. The following mathematical tools will be introduced: Laplace and Fourier transforms, Fourier series, separation of variables, methods of characteristics.
LernzielLearning to model scientific problems using partial differential equations and developing a good command of the mathematical methods that can be applied to them. Knowing the formulation of important problems in science and engineering with a view toward civil engineering (when possible). Understanding the properties of the different types of partial differential equations arising in science and in engineering.
InhaltClassification of partial differential equations

Study of the Heat equation general diffusion/parabolic problems using the following tools:
* Separation of variables
* Fourier series
* Fourier transform
* Laplace transform

Study of the wave equation and general hyperbolic problems using similar tools and the method of characteristics.

Study of the Laplace equation and general elliptic problems using similar tools and generalizations of Fourier series.
SkriptLecture notes will be provided.
LiteraturThe course material is taken from the following sources:

Stanley J. Farlow - Partial Differential Equations for Scientists and Engineers

G. Felder: Partielle Differenzialgleichungen.
Voraussetzungen / BesonderesAnalysis I and II. In particular, knowing how to solve ordinary differential equations is an important prerequisite.
401-5530-00LGeometry Seminar Information 0 KP1KM. Burger, M. Einsiedler, A. Iozzi, U. Lang, A. Sisto, Uni-Dozierende
KurzbeschreibungResearch colloquium
Belegung ist NUR erlaubt für MSc Studierende, die diese Lerneinheit als Auflagenfach verfügt haben.

Alle andere Studierenden (u.a. auch Mobilitätsstudierende, Doktorierende) können diese Lerneinheit NICHT belegen.
6 KP13RA. Sisto
KurzbeschreibungTopological spaces, continuous maps, connectedness, compactness, separation axioms, metric spaces, quotient spaces, homotopy, fundamental group and covering spaces, van Kampen Theorem, surfaces and manifolds.
LiteraturKlaus Jänich: Topologie (Springer-Verlag)
James Munkres: Topology (Prentice Hall)
William Massey: Algebraic Topology: an Introduction (Springer-Verlag)
Alan Hatcher: Algebraic Topology (Cambridge University Press)
Voraussetzungen / BesonderesThe precise content changes with the examiner. Candidates must therefore contact the examiner in person before studying the material.