Rico Zenklusen: Katalogdaten im Frühjahrssemester 2023

Auszeichnung: Die Goldene Eule
NameHerr Prof. Dr. Rico Zenklusen
LehrgebietMathematik
Adresse
Institut für Operations Research
ETH Zürich, HG G 22.4
Rämistrasse 101
8092 Zürich
SWITZERLAND
Telefon+41 44 633 93 42
E-Mailricoz@ethz.ch
URLhttps://math.ethz.ch/ifor/groups/zenklusen_group/rico-zenklusen.html
DepartementMathematik
BeziehungOrdentlicher Professor

NummerTitelECTSUmfangDozierende
364-1058-00LRisk Center Seminar Series0 KP2SH. Schernberg, D. Basin, A. Bommier, D. N. Bresch, S. Brusoni, L.‑E. Cederman, P. Cheridito, F. Corman, H. Gersbach, C. Hölscher, K. Paterson, G. Sansavini, B. Stojadinovic, B. Sudret, J. Teichmann, R. Wattenhofer, U. A. Weidmann, S. Wiemer, R. Zenklusen
KurzbeschreibungIn this series of seminars, invited speakers discuss various topics in the area of risk modelling, governance of complex socio-economic systems, managing risks and crises, and building resilience. Students, PhD students, post-docs, faculty and individuals outside ETH are welcome.
LernzielParticipants gain insights in a broad range of risk- and resilience-related topics. They expand their knowledge of the field and deepen their understanding of the complexity of our social, economic and engineered systems. For young researchers in particular, the seminars offer an opportunity to learn academic presentation skills and to network with an interdisciplinary scientific audience.
InhaltAcademic presentations from ETH faculty as well as external researchers.
Each seminar is followed by a Q&A session and (when permitted) a networking Apéro.
SkriptThe sessions are recorded whenever possible and posted on the ETH Risk Center webpage. If available, presentation slides are shared as well.
LiteraturEach speaker will provide a literature review.
Voraussetzungen / BesonderesIn most cases, a quantitative background is required. Depending on the topic, field-specific knowledge may be required.
KompetenzenKompetenzen
Fachspezifische KompetenzenKonzepte und Theoriengefördert
Verfahren und Technologiengefördert
Methodenspezifische KompetenzenAnalytische Kompetenzengefördert
Entscheidungsfindunggefördert
Medien und digitale Technologiengefördert
Problemlösunggefördert
Projektmanagementgefördert
Soziale KompetenzenKommunikationgefördert
Kooperation und Teamarbeitgefördert
Kundenorientierunggefördert
Menschenführung und Verantwortunggefördert
Selbstdarstellung und soziale Einflussnahmegefördert
Sensibilität für Vielfalt gefördert
Verhandlunggefördert
Persönliche KompetenzenAnpassung und Flexibilitätgefördert
Kreatives Denkengefördert
Kritisches Denkengefördert
Integrität und Arbeitsethikgefördert
Selbstbewusstsein und Selbstreflexion gefördert
Selbststeuerung und Selbstmanagement gefördert
401-3900-16LAdvanced Topics in Discrete Optimization Belegung eingeschränkt - Details anzeigen
Number of participants limited to 12.
4 KP2SR. Zenklusen, D. E. K. Hershkowitz, R. Santiago Torres
KurzbeschreibungIn this seminar we will discuss selected topics in discrete optimization. The main focus is on mostly recent research papers in the field of Combinatorial Optimization.
LernzielThe goal of the seminar is twofold. First, we aim at improving students' presentation and communication skills. In particular, students are to present a research paper to their peers and the instructors in a clear and understandable way. Second, students learn a selection of recent cutting-edge approaches in the field of Combinatorial Optimization by attending the other students' talks. A very active participation in the seminar helps students to build up the necessary skills for parsing and digesting advanced technical texts on a significantly higher complexity level than usual textbooks.

A key goal is that students prepare their presentations in a concise and accessible way to make sure that other participants get a clear idea of the presented results and techniques.

Students intending to do a project in optimization are strongly encouraged to participate.
InhaltThe selected topics will cover various classical and modern results in Combinatorial Optimization.

Contrary to prior years, a very significant component of the seminar will be interactive discussions where active participation of the students is required.
LiteraturThe learning material will be in the form of scientific papers.
Voraussetzungen / BesonderesRequirements: We expect students to have a thorough understanding of topics covered in the course "Linear & Combinatorial Optimization".
KompetenzenKompetenzen
Fachspezifische KompetenzenKonzepte und Theoriengeprüft
Methodenspezifische KompetenzenAnalytische Kompetenzengeprüft
Entscheidungsfindunggefördert
Soziale KompetenzenKommunikationgeprüft
401-3902-DRLNetwork & Integer Optimization: From Theory to Application Belegung eingeschränkt - Details anzeigen
Only for ETH D-MATH doctoral students and for doctoral students from the Institute of Mathematics at UZH. The latter need to send an email to Jessica Bolsinger (info@zgsm.ch) with the course number. The email should have the subject „Graduate course registration (ETH)“.
2 KP3GR. Zenklusen
KurzbeschreibungThis course covers various topics in Network and (Mixed-)Integer Optimization. It starts with a rigorous study of algorithmic techniques for some network optimization problems (with a focus on matching problems) and moves to key aspects of how to attack various optimization settings through well-designed (Mixed-)Integer Programming formulations.
LernzielOur goal is for students to both get a good foundational understanding of some key network algorithms and also to learn how to effectively employ (Mixed-)Integer Programming formulations, techniques, and solvers, to tackle a wide range of discrete optimization problems.
InhaltKey topics include:
- Matching problems;
- Integer Programming techniques and models;
- Extended formulations and strong problem formulations;
- Solver techniques for (Mixed-)Integer Programs;
- Decomposition approaches.
Literatur- Bernhard Korte, Jens Vygen: Combinatorial Optimization. 6th edition, Springer, 2018.
- Alexander Schrijver: Combinatorial Optimization: Polyhedra and Efficiency. Springer, 2003. This work has 3 volumes.
- Vanderbeck François, Wolsey Laurence: Reformulations and Decomposition of Integer Programs. Chapter 13 in: 50 Years of Integer Programming 1958-2008. Springer, 2010.
- Alexander Schrijver: Theory of Linear and Integer Programming. John Wiley, 1986.
Voraussetzungen / BesonderesSolid background in linear algebra. Preliminary knowledge of Linear Programming is ideal but not a strict requirement. Prior attendance of the course Linear & Combinatorial Optimization is a plus.
KompetenzenKompetenzen
Fachspezifische KompetenzenKonzepte und Theoriengeprüft
Methodenspezifische KompetenzenAnalytische Kompetenzengeprüft
Entscheidungsfindunggeprüft
Problemlösunggeprüft
Soziale KompetenzenKommunikationgeprüft
Persönliche KompetenzenKreatives Denkengeprüft
401-3902-21LNetwork & Integer Optimization: From Theory to Application6 KP3GR. Zenklusen
KurzbeschreibungThis course covers various topics in Network and (Mixed-)Integer Optimization. It starts with a rigorous study of algorithmic techniques for some network optimization problems (with a focus on matching problems) and moves to key aspects of how to attack various optimization settings through well-designed (Mixed-)Integer Programming formulations.
LernzielOur goal is for students to both get a good foundational understanding of some key network algorithms and also to learn how to effectively employ (Mixed-)Integer Programming formulations, techniques, and solvers, to tackle a wide range of discrete optimization problems.
InhaltKey topics include:
- Matching problems;
- Integer Programming techniques and models;
- Extended formulations and strong problem formulations;
- Solver techniques for (Mixed-)Integer Programs;
- Decomposition approaches.
Literatur- Bernhard Korte, Jens Vygen: Combinatorial Optimization. 6th edition, Springer, 2018.
- Alexander Schrijver: Combinatorial Optimization: Polyhedra and Efficiency. Springer, 2003. This work has 3 volumes.
- Vanderbeck François, Wolsey Laurence: Reformulations and Decomposition of Integer Programs. Chapter 13 in: 50 Years of Integer Programming 1958-2008. Springer, 2010.
- Alexander Schrijver: Theory of Linear and Integer Programming. John Wiley, 1986.
Voraussetzungen / BesonderesSolid background in linear algebra. Preliminary knowledge of Linear Programming is ideal but not a strict requirement. Prior attendance of the course Linear & Combinatorial Optimization is a plus.
KompetenzenKompetenzen
Fachspezifische KompetenzenKonzepte und Theoriengeprüft
Methodenspezifische KompetenzenAnalytische Kompetenzengeprüft
Entscheidungsfindunggeprüft
Problemlösunggeprüft
Soziale KompetenzenKommunikationgeprüft
Persönliche KompetenzenKreatives Denkengeprüft
401-5660-00LDACO Seminar Information 0 KP1KA. Bandeira, R. Weismantel, R. Zenklusen
KurzbeschreibungResearch colloquium
Lernziel