Karsten Weis: Catalogue data in Autumn Semester 2023

Name Prof. Dr. Karsten Weis
FieldCellular Dynamics
Address
Institut für Biochemie
ETH Zürich, HPM E 6
Otto-Stern-Weg 3
8093 Zürich
SWITZERLAND
Telephone+41 44 632 30 08
E-mailkarsten.weis@bc.biol.ethz.ch
DepartmentBiology
RelationshipFull Professor

NumberTitleECTSHoursLecturers
551-0337-00LCell Biology of the Nucleus Restricted registration - show details
Number of participants limited to 18.
The enrolment is done by the D-BIOL study administration.
6 credits7PR. Kroschewski, Y. Barral, M. Jagannathan, S. Jessberger, K. Weis
AbstractIntroduction to the organizational principles of the nucleus using budding yeast, drosophila and vertebrate cells as model systems.
Learning objectiveThe aim of our course is to introduce the students to the organizational principles of the nucleus using budding yeast, drosophila and vertebrate cells as model systems. Emphasis is given to:
• Establishment of nuclear identity and nuclear-cytoplasmic communication
• Reorganization of the nucleus in aging
• Animal cells during the generation of cell diversity and neuronal differentiation

By the end of the course, based on lectures, literature reading and practical lab work, the students will be able to formulate open questions concerning the function of the nucleus. Thus, the students will know about the mechanisms and consequences of nuclear-cytoplasmic compartmentalization, DNA clustering in the nucleus and cytoplasm during cell divisions and aging.
ContentDuring this block-course, the students will
- learn how organelles establish and maintain identity with a focus on the nucleus
- discover the evolutionary and functional plasticity of the nucleus
- design, apply, evaluate and compare experimental strategies


Students - in groups of 2 or max. 3 - will be integrated into a research project connected to the subject of the course, within one of the participating research groups.

Lectures and technical notes will be given and informal discussions held to provide you with the theoretical background.
Lecture notesThere will be optional papers to be read before the course start. They serve as framework orientation for the practical parts of this block course and will be made accessible to you shortly before the course starts on the relevant Moodle site.
LiteratureDocumentation and recommended literature (review articles) will be provided during the course.
CompetenciesCompetencies
Subject-specific CompetenciesConcepts and Theoriesassessed
Techniques and Technologiesassessed
Method-specific CompetenciesAnalytical Competenciesassessed
Decision-makingassessed
Problem-solvingassessed
Project Managementfostered
Social CompetenciesCommunicationassessed
Cooperation and Teamworkassessed
Personal CompetenciesAdaptability and Flexibilityfostered
Creative Thinkingfostered
Critical Thinkingassessed
Integrity and Work Ethicsfostered
Self-awareness and Self-reflection fostered
551-0357-00LCellular Matters: Properties, Functions and Applications of Biomolecular Condensates
The number of participants is limited to 30 and will only take place with a minimum of 6 participants.

The first lecture will serve to form groups of students and assign papers.
4 credits2ST. Michaels, F. Allain, P. Arosio, Y. Barral, D. Hilvert, M. Jagannathan, R. Mezzenga, G. Neurohr, R. Riek, A. E. Smith, K. Weis, H. Wennemers, further lecturers
AbstractThis Master level course delves into the emerging field of biomolecular condensates - membrane-less organelles in cells. Using interdisciplinary concepts from biology, chemistry, biophysics, and soft matter, we will explore the biological properties of these condensates, their functions in health and disease, and their potentiol as new biomimetic materials for various applications.
Learning objectiveIn the last decade, a novel type of cell compartments called biomolecular condensates have been discovered. This discovery is radically changing our understanding of the cell, its organization, and dynamics. The emerging picture is that the cytoplasm and nucleoplasm are highly complex fluids that can (meta)stably segregate into membrane-less compartments, similary to emulsions.

This interdisciplinary course encompasses milestone works and cutting-edge research questions in the young field of biomolecular condensates, including their properties, functions, and applications. The course begins with a lecture series that introduces the topic of condensates to an interdisciplinary audience and provides a theoretical foundation for understanding current research questions in the field. the lecturesprovide a base for student presentations of recent publications in the field, and for research seminars given by course lecturers, who are all active researchers with diverse expertise. Through this exciting interdisciplinary understanding of biomolecular condensates, bridging biology, chemistry, biophysics, and soft matter.

Students will not only learn how to critically read and evaluate scientific literature but will also gain valuable experience in giving scientific presentations to an interdisciplinary audience. Each presentation will require an introduction, critical analysis of the results, and a discussion of their significance, allowing student to substantiate their statements with a critical mindset that considers the pros and cons of chosen approaches and methods, as well as any limitations or possible follow-up experiments. This process will enable student to ask relevant querions and actively participate in class discussions, further enhancing their scientific skills.

In preparing the presentations, the students will have the unique opportunity to interact closely with each other and with the lecturers, who are all internationally well-established experts, and receive guidance in selectin a topic for the final presentaton and supporting literature.
ContentThe topic of biomolecular condensates goes beyond the boundaries of traditional disciplines and requires a multi-disciplinary approach that leverages and cross-fertilizes biology, physical chemistry, biophysics, and soft matter. This course will explore the properties, functions and potentioal applicatons of biomolecular condensates, including their role in neurodegenerative diseases such as Alzheimer's and Parkinson's, as well as their use as smart biomimetic materials.

This course is divided into two parts. The fist part will introduce the basic concepts essentialto the study of biomolecular condensates and phase separation. Topics include: fundamental units and scales in soft matter, phase transitions in biology, biopolymers and molecular self-assembly, introduction to active matter. This will establish a foundation for the second part, which will explore milestone works and current research in the field of biomolecular condensates. Each lecture of this second part will consist of:
1) a short literature seminar, where student groups will present and discuss a milestone paper assigned in advance and
2) a research seminar, where one of the course lecturers will present their own state-of-the art research in the field, building upon the milestone literature.
At the beginning of the course, student groups will be formed and assigned the milestone papers.
Lecture notesLecture slides and some scripts will be provided.
LiteratureNo compulsory textbooks. Literature will be provided during the course
CompetenciesCompetencies
Subject-specific CompetenciesConcepts and Theoriesassessed
Techniques and Technologiesassessed
Method-specific CompetenciesAnalytical Competenciesassessed
Decision-makingfostered
Media and Digital Technologiesfostered
Problem-solvingfostered
Project Managementfostered
Social CompetenciesCommunicationassessed
Cooperation and Teamworkassessed
Customer Orientationfostered
Leadership and Responsibilityassessed
Self-presentation and Social Influence fostered
Sensitivity to Diversityassessed
Negotiationassessed
Personal CompetenciesAdaptability and Flexibilityfostered
Creative Thinkingassessed
Critical Thinkingassessed
Integrity and Work Ethicsfostered
Self-awareness and Self-reflection fostered
Self-direction and Self-management fostered
551-1005-00LBioanalytics Information 4 credits4GP. Picotti, F. Allain, V. Korkhov, M. Pilhofer, R. Schlapbach, K. Weis, K. Wüthrich, further lecturers
AbstractThe course will introduce students to a selected set of laboratory techniques that are foundational to modern biological research.
Learning objectiveFor each of the techniques covered in the course, the students will be able to explain:
a) the physical, chemical and biological principles underlying the technique,
b) the requirements for the sample,
c) the type of raw data collected by the technique,
d) the assumptions and auxiliarry information used in the interpretation of the data and
e) how these data can be used to answer a given biological question.
By the end of the course the students will be able to select the appropriate experimental technique to answer a given biological problem and will be able to discuss the
advantages and limitations of individual techniques as well as how different techniques can be combined to gain a more complete understanding of a given biological questions.
ContentThe course will be based on a combination of lectures, selfstudy elements and exercises.

The focus will be on the following experimental techniques:

- DNA sequencing
- chromatography
- mass-spectrometry
- UV/Vis and fluorescence spectrometry
- light microscopy
- electron microscopy
- X-ray crystallography
- NMR spectroscopy
Lecture notesThe course is supported by a Moodle page that gives access to all supporting materials necessary for the course.
CompetenciesCompetencies
Subject-specific CompetenciesConcepts and Theoriesassessed
Techniques and Technologiesassessed
Method-specific CompetenciesAnalytical Competenciesassessed
Decision-makingassessed
Media and Digital Technologiesfostered
Problem-solvingassessed
Project Managementfostered
Personal CompetenciesCreative Thinkingassessed
Critical Thinkingassessed
Self-awareness and Self-reflection fostered