Alla Sologubenko: Katalogdaten im Frühjahrssemester 2022

NameFrau Dr. Alla Sologubenko
Adresse
ScopeM
ETH Zürich, HPM C 57.3
Otto-Stern-Weg 3
8093 Zürich
SWITZERLAND
Telefon+41 44 633 68 12
E-Mailalla.sologubenko@scopem.ethz.ch
URLhttps://scopem.ethz.ch/
DepartementMaterialwissenschaft
BeziehungDozentin

NummerTitelECTSUmfangDozierende
227-0390-00LElements of Microscopy4 KP3GM. Stampanoni, G. Csúcs, A. Sologubenko
KurzbeschreibungThe lecture reviews the basics of microscopy by discussing wave propagation, diffraction phenomena and aberrations. It gives the basics of light microscopy, introducing fluorescence, wide-field, confocal and multiphoton imaging. It further covers 3D electron microscopy and 3D X-ray tomographic micro and nanoimaging.
LernzielSolid introduction to the basics of microscopy, either with visible light, electrons or X-rays.
InhaltIt would be impossible to imagine any scientific activities without the help of microscopy. Nowadays, scientists can count on very powerful instruments that allow investigating sample down to the atomic level.
The lecture includes a general introduction to the principles of microscopy, from wave physics to image formation. It provides the physical and engineering basics to understand visible light, electron and X-ray microscopy.
During selected exercises in the lab, several sophisticated instrument will be explained and their capabilities demonstrated.
LiteraturAvailable Online.
327-2126-00LMicroscopy Training TEM I - Introduction to TEM Belegung eingeschränkt - Details anzeigen
Number of participants limited to 6.
Master students will have priority over PhD students. PhD students may still enroll, but will be asked for a fee (http://www.scopem.ethz.ch/education/MTP.html).

TEM 1 registration form: (Link)
2 KP3PP. Zeng, E. J. Barthazy Meier, A. G. Bittermann, F. Gramm, A. Sologubenko, M. Willinger
KurzbeschreibungDer Einführungskurs in Transmissionselektronenmikroskopie (TEM) bietet neuen Nutzern die Möglichkeit theoretisches Wissen und praktische Kenntnisse in TEM zu erwerben
Lernziel- Overview of TEM theory, instrumentation, operation and applications.
- Alignment and operation of a TEM, as well as acquisition and interpretation of images, diffraction patterns, accomplishing basic tasks successfully.
- Knowledge of electron imaging modes (including Scanning Transmission Electron Microscopy), magnification calibration, and image acquisition using CCD cameras.
- To set up the TEM to acquire diffraction patterns, perform camera length calibration, as well as measure and interpret diffraction patterns.
- Overview of techniques for specimen preparation.
InhaltUsing two Transmission Electron Microscopes the students learn how to align a TEM, select parameters for acquisition of images in bright field (BF) and dark field (DF), perform scanning transmission electron microscopy (STEM) imaging, phase contrast imaging, and acquire electron diffraction patterns. The participants will also learn basic and advanced use of digital cameras and digital imaging methods.

- Introduction and discussion on Electron Microscopy and instrumentation.
- Lectures on electron sources, electron lenses and probe formation.
- Lectures on beam/specimen interaction, image formation, image contrast and imaging modes.
- Lectures on sample preparation techniques for EM.
- Brief description and demonstration of the TEM microscope.
- Practice on beam/specimen interaction, image formation, Image contrast (and image processing).
- Demonstration of Transmission Electron Microscopes and imaging modes (Phase contrast, BF, DF, STEM).
- Student participation on sample preparation techniques.
- Transmission Electron Microscopy lab exercises: setup and operate the instrument under various imaging modalities.
- TEM alignment, calibration, correction to improve image contrast and quality.
- Electron diffraction.
- Practice on real-world samples and report results.
Literatur- Detailed course manual
- Williams, Carter: Transmission Electron Microscopy, Plenum Press, 1996
- Hawkes, Valdre: Biophysical Electron Microscopy, Academic Press, 1990
- Egerton: Physical Principles of Electron Microscopy: an introduction to TEM, SEM and AEM, Springer Verlag, 2007
Voraussetzungen / BesonderesNo mandatory prerequisites. Please consider the prior attendance to EM Basic lectures (551- 1618-00V; 227-0390-00L; 327-0703-00L) as suggested prerequisite.
327-2129-00LAnalytical Electron Microscopy: EDS Belegung eingeschränkt - Details anzeigen
Limited number of participants.

Registration form: (Link)
1 KP2PP. Zeng, L. Grafulha Morales, K. Kunze, A. Sologubenko
KurzbeschreibungThe main goal of this hands-on course is to provide students with fundamental understanding of underlying physical processes, experimental set-up solutions and hands-on practical experience of analytical electron microscopy (AEM) technique for microstructure characterisation, specifically Energy Dispersive X-ray Spectroscopy (EDS) and spectrum imaging (SI) technique.
Lernziel- understanding of physical processes that enable the EDS technique and data evaluation algorithms;
- hand-on experience of data acquisition and evaluation routines including
o practical understanding of different data acquisition set-ups,
o optimization of acquisition parameters for most reliable quantification of the results,
o the knowledge of the available and most reliable quantification algorithms and their handling
o the knowledge of data evaluation routines and possible handicaps for reliable elemental content distribution analyses and material composition quantification
o the effect of the specimen geometry on the data and experimental solutions for minimization of the artefacts
InhaltThis advanced course provides analytical EM techniques to the students with prior EM experience (TEM or SEM). At the end of the course, students will understand the physical processes that enable the EDS technique and data evaluation algorithms and apply the technique for their own research.
- Introduction to analytical electron microscopy: theory and instrumentation.
- Lectures on EDS, WDS
- Practical on EDS-SEM: data acquisition and analysis.
- Practical on EDS-TEM: data acquisition and analysis.
The hand-on trainings are to be carried-out on a real-life specimen, provided by lecturers and / by students.
SkriptProvided in the course Moodle-page
Literatur- Egerton: Physical Principles of Electron Microscopy: an introduction to TEM, SEM and AEM. Springer Verlag, 2007
- Williams & Carter: Transmission Electron Microscopy: A Textbook for Material Sciences. Plenum Press, 2nd Edition 2009, ISBD: 0 306 45247-2
- Goodhew, Humphreys & Beanland: Electron Microscopy and Analyses, Third edition. CRC Press, 2000
- Carter & Williams: Transmission Electron Microscopy: Diffraction, Imaging and Spectrometry. Springer Verlag, 2016, DOI: 10.1007/978-3-319-26651-0
- Reed: Electron Microprobe Analysis and Scanning Electron Microscopy in Geology. Cambridge University Press, 2010
Voraussetzungen / Besonderes- Master student or PhD student who has experience with EM (SEM or TEM) techniques or prior attendance of one of the following courses: Microscopy Training SEM1 (327-2125-00L) or Microscopy Training TEM1(327-2126-00L)
- Attendance of the following courses is of advantage, but not required: Scattering Techniques for Material Characterization (327-2137-00L) or Elements of Microscopy (227-0390-00L) or Electron Microscopy in Material Science (327-0703-00L)