Alla Sologubenko: Catalogue data in Spring Semester 2020

Name Dr. Alla Sologubenko
Address
ScopeM
ETH Zürich, HPM C 57.3
Otto-Stern-Weg 3
8093 Zürich
SWITZERLAND
Telephone+41 44 633 68 12
E-mailalla.sologubenko@scopem.ethz.ch
URLhttps://scopem.ethz.ch/
DepartmentMaterials
RelationshipLecturer

NumberTitleECTSHoursLecturers
227-0390-00LElements of Microscopy4 credits3GM. Stampanoni, G. Csúcs, A. Sologubenko
AbstractThe lecture reviews the basics of microscopy by discussing wave propagation, diffraction phenomena and aberrations. It gives the basics of light microscopy, introducing fluorescence, wide-field, confocal and multiphoton imaging. It further covers 3D electron microscopy and 3D X-ray tomographic micro and nanoimaging.
ObjectiveSolid introduction to the basics of microscopy, either with visible light, electrons or X-rays.
ContentIt would be impossible to imagine any scientific activities without the help of microscopy. Nowadays, scientists can count on very powerful instruments that allow investigating sample down to the atomic level.
The lecture includes a general introduction to the principles of microscopy, from wave physics to image formation. It provides the physical and engineering basics to understand visible light, electron and X-ray microscopy.
During selected exercises in the lab, several sophisticated instrument will be explained and their capabilities demonstrated.
LiteratureAvailable Online.
327-2126-00LMicroscopy Training TEM I - Introduction to TEM Restricted registration - show details
Number of participants limited to 6.
Master students will have priority over PhD students. PhD students may still enroll, but will be asked for a fee (Link).

TEM 1 registration form: (Link)
2 credits3PP. Zeng, E. J. Barthazy Meier, A. G. Bittermann, F. Gramm, A. Sologubenko, M. Willinger
AbstractThe introductory course on Transmission Electron Microscopy (TEM) provides theoretical and hands-on learning for new operators, utilizing lectures, demonstrations, and hands-on sessions.
Objective- Overview of TEM theory, instrumentation, operation and applications.
- Alignment and operation of a TEM, as well as acquisition and interpretation of images, diffraction patterns, accomplishing basic tasks successfully.
- Knowledge of electron imaging modes (including Scanning Transmission Electron Microscopy), magnification calibration, and image acquisition using CCD cameras.
- To set up the TEM to acquire diffraction patterns, perform camera length calibration, as well as measure and interpret diffraction patterns.
- Overview of techniques for specimen preparation.
ContentUsing two Transmission Electron Microscopes the students learn how to align a TEM, select parameters for acquisition of images in bright field (BF) and dark field (DF), perform scanning transmission electron microscopy (STEM) imaging, phase contrast imaging, and acquire electron diffraction patterns. The participants will also learn basic and advanced use of digital cameras and digital imaging methods.

- Introduction and discussion on Electron Microscopy and instrumentation.
- Lectures on electron sources, electron lenses and probe formation.
- Lectures on beam/specimen interaction, image formation, image contrast and imaging modes.
- Lectures on sample preparation techniques for EM.
- Brief description and demonstration of the TEM microscope.
- Practice on beam/specimen interaction, image formation, Image contrast (and image processing).
- Demonstration of Transmission Electron Microscopes and imaging modes (Phase contrast, BF, DF, STEM).
- Student participation on sample preparation techniques.
- Transmission Electron Microscopy lab exercises: setup and operate the instrument under various imaging modalities.
- TEM alignment, calibration, correction to improve image contrast and quality.
- Electron diffraction.
- Practice on real-world samples and report results.
Literature- Detailed course manual
- Williams, Carter: Transmission Electron Microscopy, Plenum Press, 1996
- Hawkes, Valdre: Biophysical Electron Microscopy, Academic Press, 1990
- Egerton: Physical Principles of Electron Microscopy: an introduction to TEM, SEM and AEM, Springer Verlag, 2007
Prerequisites / NoticeNo mandatory prerequisites. Please consider the prior attendance to EM Basic lectures (551- 1618-00V; 227-0390-00L; 327-0703-00L) as suggested prerequisite.
327-2135-00LAdvanced Analytical TEM Restricted registration - show details
Number of participants limited to 12.
Master students will have priority over PhD students. More information here: Link
2 credits3GA. Sologubenko, R. Erni, R. Schäublin, M. Willinger, P. Zeng
AbstractThe course focuses on the fundamental understanding and hands-on knowledge of analytical Transmission Electron Microscopy (ATEM) techniques: electron dispersive X-ray analysis (EDX), energy filtered TEM and electron energy loss spectroscopy (EELS). The lectures will be followed by demonstrations and acquisition sessions TEM instruments.The lectures on statistical treatment of raw data sets and on
Objective• Setting-up the optimal operation conditions for reliable EDX analysis and quantification.
• Setting-up the optimal operation conditions for the reliable EFTEM analyses.
• Setting-up the optimal operation conditions for the reliable EELS analyses.
• EDX data acquisition, on-line analysis and quantification.
• EFTEM data acquisition and analysis.
• EELS acquisition analyses.
Content1. Fundamentals of analytical TEM.
2. Electron Optics and Instrumentation. Spectrum Imaging.
3. Quantitative X-ray Spectrometry.
4. EELS.
5. EFTEM.
6. Statistical treatment of raw data.
7. EDX. Quantification and data evaluation.
8. Demonstrations on EDX, EELS, and EFTEM data acquisitions.
9. Practical sessions for students with provided specimens. Practical sessions for
students with their own specimens.
10. Questions and such: open discussion.
11. Student presentations.
Literature• Egerton: Physical Principles of Electron Microscopy: an introduction to TEM, SEM and AEM, Springer Verlag, 2007
• Williams, Carter: Transmission Electron Microscopy, Plenum Press, 2nd Edition 2009
• Egerton: Electron Energy-Loss Spectroscopy in the Electron Microscopy, 3rd Edition,
Springer, 2011.
Prerequisites / NoticeNo mandatory prerequisites. Prior attendance to EM Basic lectures (327-0703-00L, 227- 0390-00L) and to the Microscopy Training TEM I - Introduction to TEM course (327-2126- 00L) is recommended.