Rolf Erni: Katalogdaten im Frühjahrssemester 2022

NameHerr Prof. Dr. Rolf Erni
Adresse
Empa
Überlandstrasse 129
Zentrum für Elektronenmikroskopie
8600 Dübendorf
SWITZERLAND
Telefon058 765 40 80
E-Mailrolf.erni@mat.ethz.ch
DepartementMaterialwissenschaft
BeziehungTitularprofessor

NummerTitelECTSUmfangDozierende
327-0413-00LMaterials Characterization II4 KP4GR. Erni, S. Gerstl, A. Hrabec, V. Scagnoli, M. Trassin, T. Weber, M. Willinger
KurzbeschreibungDas Hauptlernziel des Kurses ist, dass die Studierenden selbständig eine geeignete Charaktersierungsmethode wählen können, um ein spezifisches materialwissenschaftliches Problem lösen zu können. Folgende Methoden werden dabei behandelt: Licht-, Rasterkraft- und Elektronenmikroskopie, Beugungsmethoden (Röntgen, Neutronen, Elektronen) und Atomsondentomographie. Vorlesungen und Praktika in D oder E.
Lernziel- Erklären der Grundkonzepte von elementaren und fortgeschrittenen Materialcharakterisierungsmethoden im Bereich der Mikroskopie und Beugung.

- Indentifizieren und lösen von praktischen Problemen mittels der Anwendung ausgwählter Chrakterisierungsmethoden basierend auf entsprechenden Labor-Praktika.

- Imstande sein, Laien zu beraten warum, wie und wann diese Methoden eingesetzt werden können, um welche Information zu gewinnen und auf mögliche Probleme und Beschränkungen der Messmethoden aufmerksam zu machen.
InhaltIm ersten Teil des Semesters werden von verschiedenen Dozenten die Grundlagen von oben erwähnten Materialcharakterisierungsmethoden eingeführt. Dies ist der Vorlesungsteil des Kurses. Im zweiten Teil des Semesters werden die Studierenden, in verschiedenen Gruppen eingeteilt, in drei bis vier Laborpraktika ausgewählte Methoden anwenden. Diese Praktika sind der zentrale Teil dieses Kurses, wo die Studierenden mit praktischen Problemen und den Beschränkungen der einzelnen Methoden konfrontiert werden und selbständig in den Gruppen Lösungen erarbeiten müssen. Speziell: es werden auch Laborpraktika an den Neutronen- und Synchrotron Röntgen Einrichtungen am Paul Scherrer Institut angeboten, die ganztägig nach dem Semesterende stattfinden werden.
Skript- Folien der Vorlesungen (in Englisch) werden elektronisch verteilt.
- Je nach Praktikum, werden zusätzliche Dokumente zur Verfügung gestellt.
- In Laborjournalen sind die Studierenden aufgefort ihre eigene Dokumentation der Laborkurse zu verfassen.
Literatur- B. Fultz, J. Howe, Transmission Electron Microscopy and Diffractometry of Materials, 2nd ed., Springer, 2009.
- P. Willmott, An Introduction to Synchrotron Radiation: Techniques and Applications, Wiley, 2011.
Voraussetzungen / BesonderesMaterialcharakterisierung I
KompetenzenKompetenzen
Fachspezifische KompetenzenKonzepte und Theoriengeprüft
Verfahren und Technologiengeprüft
Methodenspezifische KompetenzenAnalytische Kompetenzengefördert
Entscheidungsfindunggeprüft
Medien und digitale Technologiengefördert
Problemlösunggeprüft
Projektmanagementgefördert
Soziale KompetenzenKommunikationgeprüft
Kooperation und Teamarbeitgeprüft
Kundenorientierunggefördert
Menschenführung und Verantwortunggefördert
Selbstdarstellung und soziale Einflussnahmegefördert
Sensibilität für Vielfalt gefördert
Verhandlunggefördert
Persönliche KompetenzenAnpassung und Flexibilitätgefördert
Kreatives Denkengeprüft
Kritisches Denkengeprüft
Integrität und Arbeitsethikgefördert
Selbstbewusstsein und Selbstreflexion gefördert
Selbststeuerung und Selbstmanagement geprüft
327-2128-00LHigh Resolution Transmission Electron Microscopy Belegung eingeschränkt - Details anzeigen
Findet dieses Semester nicht statt.
Limited number of participants.
More information here: https://scopem.ethz.ch/education/MTP.html

Registration form:
(Link)
2 KP3GR. Erni
KurzbeschreibungDieser Fortgeschrittenenkurs für hochauflösende Transmissionselektronenmikroskopie (HRTEM) bietet Vorlesungen, die sich auf HRTEM- und HRSTEM-Bildgebungsprinzipien, die zugehörige Datenanalyse und Simulation, sowie Phasenwiederherstellungsmethoden konzentrieren.
Lernziel- Learning how HRTEM and HRSTEM images are obtained.
- Learning about the aberrations affecting the resolution in TEM and STEM and the different methods to correct them.
- Learning about TEM and STEM images simulation software.
- Performing TEM and STEM image analysis (processing of TEM images and phase restoration after focal series acquisitions).
InhaltThis course provides new skills to students with previous TEM experience. At the end of the course, students will know how to obtain HR(S)TEM images, how to analyse, process and simulate them.

Topics:
1. Introduction to HRTEM and HRSTEM
2. Considerations on (S)TEM instrumentation for high resolution imaging
3. Lectures on aberrations, aberration correction and aberration corrected images
4. HRTEM and HRSTEM simulation
5. Data analysis, phase restoration and lattice-strain analysis
Literatur- Detailed course manual
- Williams, Carter: Transmission Electron Microscopy, 2nd ed., Springer, 2009
- Williams, Carter (eds.), Transmission Electron Microscopy - Diffraction, Imaging, and Spectrometry, Springer 2016
- Erni, Aberration-corrected imaging in transmission electron microscopy, 2nd ed., Imperial College Press, 2015.
- Egerton: Physical Principles of Electron Microscopy: an introduction to TEM, SEM and AEM, Springer Verlag, 2007
Voraussetzungen / BesonderesThe students should fulfil one or more of these prerequisites:
- Prior attendance to the ScopeM TEM basic course
- Prior attendance to ETH EM lectures (327-0703-00L Electron Microscopy in Material Science)
- Prior TEM experience
327-2139-00LDiffraction Physics in Materials Science3 KP3GR. Erni
KurzbeschreibungThe lecture focuses on diffraction and scattering phenomena in materials science beyond basic Bragg diffraction. Introducing the 1st-order Born approximation and Kirchoff’s theory, diffraction from ideal and non-ideal crystals is treated including, e.g., temperature and shape effects, ordering phenomena, small-angle scattering and dynamical diffraction theories.
Lernziel• To become familiar with advanced diffraction phenomena in order to be able to explore the structure and properties of (solid) matter and their defects.

• To be able to judge what type of diffraction method is suitable to probe what type of materials information.

• To build up a generally applicable and fundamental theoretical understanding of scattering and diffraction effects.

• To be able to identify limitations of the methods and the underlying theory which is commonly used to analyze diffraction data.
InhaltThe course provides a general introduction to advanced diffraction phenomena in materials science. The lecture series covers the following topics: derivation of a general scattering theory based on Green’s function as basis for the introduction of the first-order Born approximation; Kirchhoff’s diffraction theory with its integral theorem and the specific cases of Fresnel and Fraunhofer diffraction; diffraction from ideal crystals and diffraction from real crystals considering temperature effects expressed by the temperature Debye-Waller factor and by thermal diffuse scattering, atomic size effects expressed by the static Debye-Waller factor and diffuse scattering due to the modulation of the Laue monotonic scattering as a consequence of local order or clustering; the basics of small-angle scattering; and finally approaches used to treat dynamical diffraction are introduced and exemplified by performing simulations. In addition, the specifics of X-ray, electron and neutron scattering are being discussed. The course is complemented by a lab visit, selected exercises and short topical presentations given by the participants.
SkriptFull-text script is available covering within about 100 pages the core topics of the lecture and all necessary derivations.
Literatur- Diffraction Physics, 3rd ed., J. M. Cowley, Elsevier, 1994.

- X-Ray Diffraction, B. E. Warren, Dover, 1990.

- Diffraction from Materials, 2nd ed., L. H. Schwartz, J. B. Cohen, Springer, 1987.

- X-Ray Diffraction – In Crystals, Imperfect Crystals and Amorphous Bodies, A. Guinier, Dover, 1994.

- Aberration-corrected imaging in transmission electron microscopy, 2nd ed., R. Erni, Imperial College Press, 2015.
Voraussetzungen / BesonderesBasics of crystallography and the concept of reciprocal space, basics of electromagnetic and particle waves (but not mandatory)