Jonas Peters: Catalogue data in Autumn Semester 2023 |
Name | Prof. Dr. Jonas Peters |
Field | Statistics |
Address | Professur für Statistik ETH Zürich, HG G 12 Rämistrasse 101 8092 Zürich SWITZERLAND |
Telephone | +41 44 632 75 84 |
jonas.peters@stat.math.ethz.ch | |
Department | Mathematics |
Relationship | Full Professor |
Number | Title | ECTS | Hours | Lecturers | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
401-4632-DRL | Causality ![]() ![]() Only for ZGSM (ETH D-MATH and UZH I-MATH) doctoral students. The latter need to register at myStudies and then send an email to info@zgsm.ch with their name, course number and student ID. Please see https://zgsm.math.uzh.ch/index.php?id=forum0 | 2 credits | 2G | J. Peters | ||||||||||||||||||||
Abstract | In statistics, we are used to search for the best predictors of some random variable. In many situations, however, we are interested in predicting a system's behavior under manipulations. For such an analysis, we require knowledge about the underlying causal structure of the system. In this course, we study concepts and theory behind causal inference. | |||||||||||||||||||||||
Learning objective | After this course, you should be able to - understand the language and concepts of causal inference - know the assumptions under which one can infer causal relations from observational and/or interventional data - describe and apply different methods for causal structure learning - given data and a causal structure, derive causal effects and predictions of interventional experiments | |||||||||||||||||||||||
Content | The material covered in this course has a significant overlap with the material that has been covered in 401-3620-22L Student Seminar in Statistics: Causality FS2023. | |||||||||||||||||||||||
Literature | Parts of this course will be based on the book "Elements of Causal Inference" (MIT Press, open access). More details will follow. | |||||||||||||||||||||||
Prerequisites / Notice | Prerequisites: basic knowledge of probability theory and regression | |||||||||||||||||||||||
Competencies![]() |
| |||||||||||||||||||||||
401-4632-15L | Causality ![]() | 4 credits | 2G | J. Peters | ||||||||||||||||||||
Abstract | In statistics, we are used to search for the best predictors of some random variable. In many situations, however, we are interested in predicting a system's behavior under manipulations. For such an analysis, we require knowledge about the underlying causal structure of the system. In this course, we study concepts and theory behind causal inference. | |||||||||||||||||||||||
Learning objective | After this course, you should be able to - understand the language and concepts of causal inference - know the assumptions under which one can infer causal relations from observational and/or interventional data - describe and apply different methods for causal structure learning - given data and a causal structure, derive causal effects and predictions of interventional experiments | |||||||||||||||||||||||
Content | The material covered in this course has a significant overlap with the material that has been covered in 401-3620-22L Student Seminar in Statistics: Causality FS2023. | |||||||||||||||||||||||
Literature | Parts of this course will be based on the book "Elements of Causal Inference" (MIT Press, open access). More details will follow. | |||||||||||||||||||||||
Prerequisites / Notice | Prerequisites: basic knowledge of probability theory and regression | |||||||||||||||||||||||
Competencies![]() |
| |||||||||||||||||||||||
401-5620-00L | Research Seminar on Statistics ![]() | 0 credits | 1K | P. L. Bühlmann, N. Meinshausen, J. Peters, R. Furrer, L. Held, T. Hothorn, D. Kozbur, A. Sousa Bandeira, M. Wolf | ||||||||||||||||||||
Abstract | Research colloquium | |||||||||||||||||||||||
Learning objective | ||||||||||||||||||||||||
401-5640-00L | ZüKoSt: Seminar on Applied Statistics ![]() | 0 credits | 1K | M. Kalisch, F. Balabdaoui, P. L. Bühlmann, R. Furrer, L. Held, T. Hothorn, M. Mächler, L. Meier, N. Meinshausen, J. Peters, M. Robinson, A. Sousa Bandeira, C. Strobl | ||||||||||||||||||||
Abstract | About 3 talks on applied statistics. | |||||||||||||||||||||||
Learning objective | See how statistical methods are applied in practice. | |||||||||||||||||||||||
Content | There will be about 3 talks on how statistical methods are applied in practice. | |||||||||||||||||||||||
Prerequisites / Notice | This is no lecture. There is no exam and no credit points will be awarded. The current program can be found on the web: http://stat.ethz.ch/events/zukost Course language is English or German and may depend on the speaker. | |||||||||||||||||||||||
Competencies![]() |
| |||||||||||||||||||||||
401-5680-00L | Foundations of Data Science Seminar ![]() | 0 credits | P. L. Bühlmann, H. Bölcskei, J. Peters, A. Sousa Bandeira, F. Yang | |||||||||||||||||||||
Abstract | Research colloquium | |||||||||||||||||||||||
Learning objective |