Nicolai Meinshausen: Catalogue data in Spring Semester 2023 |
Name | Prof. Dr. Nicolai Meinshausen |
Field | Statistics |
Address | Professur für Statistik ETH Zürich, HG G 23.2 Rämistrasse 101 8092 Zürich SWITZERLAND |
Telephone | +41 44 632 32 74 |
meinshausen@stat.math.ethz.ch | |
URL | http://stat.ethz.ch/~nicolai |
Department | Mathematics |
Relationship | Full Professor |
Number | Title | ECTS | Hours | Lecturers | |||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
401-3620-22L | Student Seminar in Statistics: Causality Number of participants limited to 76. Mainly for students from the Mathematics Bachelor and Master Programmes who, in addition to the introductory course unit 401-2604-00L Probability and Statistics, have heard at least one core or elective course in statistics. Also offered in the Master Programmes Statistics resp. Data Science. | 4 credits | 2S | P. L. Bühlmann, N. Meinshausen | |||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Causality is dealing with fundamental questions about cause and effect. The student seminar covers statistical and mathematical aspects of causality ranging from fundamental formalization of concepts to practical algorithms and methods. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | The participants of the seminar acquire knowledge about: concepts and formalization of statistical causality; methods, algorithms and corresponding assumptions for inferring causal relations from data; causal analysis in practice based on real data. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | Basic course in probability and statistics. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
401-4620-00L | Statistics Lab | 6 credits | 2S | M. Kalisch, M. Mächler, L. Meier, N. Meinshausen | |||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | "Statistics Lab" is an Applied Statistics Workshop in Data Analysis. It provides a learning environment in a realistic setting. Students lead a regular consulting session at the Seminar für Statistik (SfS). After the session, the statistical data analysis is carried out and a written report and results are presented to the client. The project is also presented in the course's seminar. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | - gain initial experience in the consultancy process - carry out a consultancy session and produce a report - apply theoretical knowledge to an applied problem After the course, students will have practical knowledge about statistical consulting. They will have determined the scientific problem and its context, enquired the design of the experiment or data collection, and selected the appropriate methods to tackle the problem. They will have deepened their statistical knowledge, and applied their theoretical knowledge to the problem. They will have gathered experience in explaining the relevant mathematical and software issues to a client. They will have performed a statistical analysis using R (or SPSS). They improve their skills in writing a report and presenting statistical issues in a talk. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | Students participate in consulting meetings at the SfS. Several consulting dates are available for student participation. These are arranged individually. -During the first meeting the student mainly observes and participates in the discussion. During the second meeting (with a different client), the student leads the meeting. The member of the consulting team is overseeing (and contributing to) the meeting. -After the meeting, the student performs the recommended analysis, produces a report and presents the results to the client. -Finally, the student presents the case in the weekly course seminar in a talk. All students are required to attend the seminar regularly. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | n/a | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Literature | The required literature will depend on the specific statistical problem under investigation. Some introductory material can be found below. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | Prerequisites: Sound knowledge in basic statistical methods, especially regression and, if possible, analysis of variance. Basic experience in Data Analysis with R. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Competencies |
| ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
401-5620-00L | Research Seminar on Statistics | 0 credits | 1K | P. L. Bühlmann, N. Meinshausen, S. van de Geer, A. Bandeira, R. Furrer, L. Held, T. Hothorn, D. Kozbur, J. Peters, M. Wolf | |||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | Research colloquium | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | |||||||||||||||||||||||||||||||||||||||||||||||||||||||||
401-5640-00L | ZüKoSt: Seminar on Applied Statistics | 0 credits | 1K | M. Kalisch, F. Balabdaoui, A. Bandeira, P. L. Bühlmann, R. Furrer, L. Held, T. Hothorn, M. Mächler, L. Meier, N. Meinshausen, J. Peters, M. Robinson, C. Strobl, S. van de Geer | |||||||||||||||||||||||||||||||||||||||||||||||||||||
Abstract | 5 to 6 talks on applied statistics. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Learning objective | Kennenlernen von statistischen Methoden in ihrer Anwendung in verschiedenen Gebieten, besonders in Naturwissenschaft, Technik und Medizin. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Content | In 5-6 Einzelvorträgen pro Semester werden Methoden der Statistik einzeln oder überblicksartig vorgestellt, oder es werden Probleme und Problemtypen aus einzelnen Anwendungsgebieten besprochen. 3 bis 4 der Vorträge stehen in der Regel unter einem Semesterthema. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Lecture notes | Bei manchen Vorträgen werden Unterlagen verteilt. Eine Zusammenfassung ist kurz vor den Vorträgen im Internet unter http://stat.ethz.ch/talks/zukost abrufbar. Ankündigunen der Vorträge werden auf Wunsch zugesandt. | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Prerequisites / Notice | Dies ist keine Vorlesung. Es wird keine Prüfung durchgeführt, und es werden keine Kreditpunkte vergeben. Nach besonderem Programm. Koordinator M. Kalisch, Tel. 044 632 3435 Lehrsprache ist Englisch oder Deutsch je nach ReferentIn. Course language is English or German and may depend on the speaker. |