Nicolai Meinshausen: Catalogue data in Spring Semester 2023

Name Prof. Dr. Nicolai Meinshausen
FieldStatistics
Address
Professur für Statistik
ETH Zürich, HG G 23.2
Rämistrasse 101
8092 Zürich
SWITZERLAND
Telephone+41 44 632 32 74
E-mailmeinshausen@stat.math.ethz.ch
URLhttp://stat.ethz.ch/~nicolai
DepartmentMathematics
RelationshipFull Professor

NumberTitleECTSHoursLecturers
401-3620-22LStudent Seminar in Statistics: Causality Restricted registration - show details
Number of participants limited to 76.
Mainly for students from the Mathematics Bachelor and Master Programmes who, in addition to the introductory course unit 401-2604-00L Probability and Statistics, have heard at least one core or elective course in statistics. Also offered in the Master Programmes Statistics resp. Data Science.
4 credits2SP. L. Bühlmann, N. Meinshausen
AbstractCausality is dealing with fundamental questions about cause and effect. The student seminar covers statistical and mathematical aspects of causality ranging from fundamental formalization of concepts to practical algorithms and methods.
Learning objectiveThe participants of the seminar acquire knowledge about: concepts and formalization of statistical causality; methods, algorithms and corresponding assumptions for inferring causal relations from data; causal analysis in practice based on real data.
Prerequisites / NoticeBasic course in probability and statistics.
401-4620-00LStatistics Lab Restricted registration - show details 6 credits2SM. Kalisch, M. Mächler, L. Meier, N. Meinshausen
Abstract"Statistics Lab" is an Applied Statistics Workshop in Data Analysis. It
provides a learning environment in a realistic setting.

Students lead a regular consulting session at the Seminar für Statistik
(SfS). After the session, the statistical data analysis is carried out and
a written report and results are presented to the client. The project is
also presented in the course's seminar.
Learning objective- gain initial experience in the consultancy process
- carry out a consultancy session and produce a report
- apply theoretical knowledge to an applied problem

After the course, students will have practical knowledge about statistical
consulting. They will have determined the scientific problem and its
context, enquired the design of the experiment or data collection, and
selected the appropriate methods to tackle the problem. They will have
deepened their statistical knowledge, and applied their theoretical
knowledge to the problem. They will have gathered experience in explaining
the relevant mathematical and software issues to a client. They will have
performed a statistical analysis using R (or SPSS). They improve their
skills in writing a report and presenting statistical issues in a talk.
ContentStudents participate in consulting meetings at the SfS. Several consulting
dates are available for student participation. These are arranged
individually.

-During the first meeting the student mainly observes and participates in
the discussion. During the second meeting (with a different client), the
student leads the meeting. The member of the consulting team is overseeing
(and contributing to) the meeting.

-After the meeting, the student performs the recommended analysis, produces
a report and presents the results to the client.

-Finally, the student presents the case in the weekly course seminar in a
talk. All students are required to attend the seminar regularly.
Lecture notesn/a
LiteratureThe required literature will depend on the specific statistical problem
under investigation. Some introductory material can be found below.
Prerequisites / NoticePrerequisites:
Sound knowledge in basic statistical methods, especially regression and, if
possible, analysis of variance. Basic experience in Data Analysis with R.
CompetenciesCompetencies
Subject-specific CompetenciesConcepts and Theoriesfostered
Techniques and Technologiesfostered
Method-specific CompetenciesAnalytical Competenciesfostered
Decision-makingfostered
Media and Digital Technologiesfostered
Problem-solvingfostered
Project Managementfostered
Social CompetenciesCommunicationfostered
Cooperation and Teamworkfostered
Customer Orientationfostered
Leadership and Responsibilityfostered
Negotiationfostered
Personal CompetenciesAdaptability and Flexibilityfostered
Creative Thinkingfostered
Critical Thinkingfostered
Self-awareness and Self-reflection fostered
Self-direction and Self-management fostered
401-5620-00LResearch Seminar on Statistics Information 0 credits1KP. L. Bühlmann, N. Meinshausen, S. van de Geer, A. Bandeira, R. Furrer, L. Held, T. Hothorn, D. Kozbur, J. Peters, M. Wolf
AbstractResearch colloquium
Learning objective
401-5640-00LZüKoSt: Seminar on Applied Statistics Information 0 credits1KM. Kalisch, F. Balabdaoui, A. Bandeira, P. L. Bühlmann, R. Furrer, L. Held, T. Hothorn, M. Mächler, L. Meier, N. Meinshausen, J. Peters, M. Robinson, C. Strobl, S. van de Geer
Abstract5 to 6 talks on applied statistics.
Learning objectiveKennenlernen von statistischen Methoden in ihrer Anwendung in verschiedenen Gebieten, besonders in Naturwissenschaft, Technik und Medizin.
ContentIn 5-6 Einzelvorträgen pro Semester werden Methoden der Statistik einzeln oder überblicksartig vorgestellt, oder es werden Probleme und Problemtypen aus einzelnen Anwendungsgebieten besprochen.
3 bis 4 der Vorträge stehen in der Regel unter einem Semesterthema.
Lecture notesBei manchen Vorträgen werden Unterlagen verteilt.
Eine Zusammenfassung ist kurz vor den Vorträgen im Internet unter http://stat.ethz.ch/talks/zukost abrufbar.
Ankündigunen der Vorträge werden auf Wunsch zugesandt.
Prerequisites / NoticeDies ist keine Vorlesung. Es wird keine Prüfung durchgeführt, und es werden keine Kreditpunkte vergeben.
Nach besonderem Programm. Koordinator M. Kalisch, Tel. 044 632 3435
Lehrsprache ist Englisch oder Deutsch je nach ReferentIn.
Course language is English or German and may depend on the speaker.